• Lunar reflections during SLIM landing

    In my previous post, I looked at the Doppler of the SLIM S-band telemetry signal during its landing on the Moon. I showed some waterfall plots of the signal around the residual carrier. In these, a reflection on the lunar surface was visible. The following figure shows a waterfall of the signal around the residual carrier, after performing Doppler correction and using a PLL to lock to the residual carrier. I was intrigued by the patterns made by these reflections, specially by some bands that look like a ‘1’ shape (the most prominent happens at 14:58).

    In this post I study the geometry of the lunar reflection and find what causes these bands.

  • SLIM lunar landing radiometry

    SLIM, JAXA’s Smart Lander for Investigating Moon, landed near Shioli crater on January 19. Shortly after the landing, the spacecraft was powered down to conserve power, since the probe had landed in an unexpected attitude which shaded its solar panels. After a few days of trying to contact SLIM, JAXA succeeded to reestablish communication with it on January 29. By then the Sun had moved west in the sky at SLIM’s location and had started illuminating the solar panels.

    AMSAT-DL recorded the S-band signal from SLIM during the landing with the 20-meter antenna in Bochum Observatory. In this post I will analyse a recording done between 14:51:51 and 15:21:54 UTC (the touchdown was at 15:20 UTC). I will study the Doppler of the residual carrier and other radiometric quantities rather than the telemetry.

  • Trying to decode LEV-1

    LEV-1 is a small lunar hopper that was carried by the SLIM lunar lander. It was released a few metres above the surface on January 19, as part of the lunar landing of SLIM. LEV-1 transmits telemetry in the 435 MHz amateur satellite band (it has an IARU satellite coordination approval), and also in S-band. Shortly after the landing, CAMRAS received the 437.410 MHz signal from LEV-1 using the 25 m radiotelescope at Dwingeloo. They have published a couple of IQ recordings in their directory of miscellaneous recordings (see the filenames starting by slim_).

    The information about the telemetry signal of LEV-1 is scarce. Its website just says

    Telemetry format of LEV-1 stands on CCSDS. The contents of telemetry are under developing.

    The IARU coordination sheet contains other clues, such as the mention of PCM/PSK/PM, CW, and bitrates of 31, 31.25 and 32 bps, but not much else. Regardless of the mention of CCSDS, I have found that the signal from LEV-1 is quite peculiar. This post is an account of my attempt to decode the data.

  • An update about my Rust implementation of Galileo OSNMA

    Galileo OSNMA (Open Service Navigation Message Authentication) is a service in the Galileo GNSS that allows receivers to authenticate cryptographically the navigation data transmitted in the Open Service signal. This is one of the mechanisms to avoid spoofing that are being deployed in Galileo. Currently, OSNMA is in its Public Observation Test Phase. Two years ago I presented a Rust library called galileo-osnma that implements OSNMA and includes some demo software for a small microcontroller, and also a PC CLI application. Since then, some breaking changes have happened in the format of the OSNMA signal-in-space, which have required updates in galileo-osnma. I have also implemented some new features. This post is an update about the current status of my galileo-osnma library and the OSNMA test phase.

  • Decoding Peregrine Mission One

    Peregrine Mission One is a lunar lander built by Astrobotic Technology. It is the first mission to be launched under the NASA Commercial Lunar Payload Services program, and Astrobotic’s first mission. It was launched in January 8 from Cape Canaveral in the maiden flight of ULA‘s Vulcan Centaur. Shortly after the launch, the team detected an issue with a propellant leak that prevented the spacecraft from achieving a soft landing on the Moon. Since then, the team has continued operating the spacecraft to the best of their capacity and collecting as much engineering and science data as they can for the next mission. Astrobotic has been doing a superb work of communicating the progress of the mission with regular updates in the Twitter account, which should specially be praised because of the difficulties they’ve faced. Congratulations for all they have achieved so far, and best luck in the upcoming missions.

    In this post I won’t speak about propulsion anomalies, but rather about low-level technical details of the communications system, as I usually do. Peregrine Mission One, or APM1, which is NASA DSN‘s code for the mission, uses the DSN groundstations for communications, as many other lunar missions have done. However, it is not technically a deep space mission. In CCSDS terms, it is a Category A mission rather than a Category B mission (see Section 1.5 in this CCSDS book), since it operates within 2 million km of the Earth. Communications recommendations and usual practices are somewhat different between deep space and non-deep space missions, but APM1 is specially interesting in this sense because it differs in several aspects of what typical deep space missions and other lunar missions look like.

    For this post I have used some IQ recordings done by the AMSAT-DL team with the 20 metre antenna at Bochum Observatory. To my knowledge, these recordings are not publicly available.


10ghz artemis1 astronomy astrophotography ATA ccsds ce5 contests digital modes doppler dslwp dsp eshail2 fec freedv frequency gmat gnss gnuradio gomx hermeslite hf jt kits lilacsat limesdr linrad lte microwaves mods moonbounce noise ofdm orbital dynamics outernet polarization radar radioastronomy radiosonde rust satellites sdr signal generators tianwen vhf & uhf