In-orbit testing of Es’hail 2 Amateur transponders

Yesterday, December 23, MELCO carried out some in-orbit tests of the Es’hail 2 Amateur radio transponders. Since Es’hail 2 is currently under commissioning, it was expected that at some point the Amateur transponders would be activated for testing, but no announcement of the tests was done in advance. At around 11:00 UTC, Rob Janssen PE1CHL, noticed that the narrowband transponder was active and a carrier signal was being transmitted through it.

Since then, I monitored most of the tests and sent updates on Twitter, together with other people (see also the posts in the AMSAT-DL forum). Without knowing the details of the test plans, we limited ourselves to watching and following the tests that were being made. If some schedule of the tests had been published in advanced, we could have thought, prepared and performed some interesting measurements on the downlink signals.

I understand that since these tests are carried out by MELCO, AMSAT-DL might not have the specific details, but still I think that AMSAT-DL is publishing very little information about Es’hail 2 events. It was only at 22:35 UTC that AMSAT-DL published a small note on Twitter about the tests. I think the greatest concern is that people start transmitting through the transponder, interfering with the tests. However, since news spread very fast these days through social media, I think that publishing more information rather than keeping things discreetly serves better to prevent people from using the transponder during the commissioning. In any case, I’ll repeat it here:

Es’hail 2 is currently under commissioning. The 2.4GHz uplink of the Amateur transponders should never be used until authorized by AMSAT-DL. The Amateur transponders will sometimes be enabled for in-orbit testing by the MELCO/Es’hailSat/AMSAT-DL engineers. Relax, sit back, and watch the tests on the 10GHz downlink.

I also think that publishing more information would be beneficial to educate the community of radio Amateurs. Some people have asked me about the concept of in-orbit tests. After a satellite is launched into orbit, the performance of all its systems is tested to ensure that it matches design specifications, simulations, and pre-launch tests done on ground. This is important to guarantee that any problems, malfunction or damage that occurred during the launch can be diagnosed and hopefully mitigated by activating backup systems or other reliability measures. In-orbit testing of large satellites can take several months, since there are many complex systems that need to be tested remotely.

In the case of the Amateur radio payload of Es’hail 2, MELCO is carrying out the tests, since the payload was built by MELCO according to the design specifications by AMSAT-DL. The kind of tests they are performing are related to the performance of the bent-pipe transponders. They sweep in frequency the transponders to make sure that the passband shape is as expected. They transmit carriers of different power levels to check for linearity of the transponder and AGC performance, and they try different gain/power level settings of the transponder power amplifier to make sure it performs correctly over all its working range.

This is a rough account of the tests that were made yesterday, using my tweets as a sort of activity log.

Continue reading “In-orbit testing of Es’hail 2 Amateur transponders”

Recommendations for receiving Es’hail 2

A couple days ago, Janos Tolgyesi HG5APZ asked me by email about different hardware setups to receive the Amateur radio transponders on Es’hail 2, with an interest on inexpensive but effective solutions. He was quite happy with my detailed reply and convinced me to turn it into a blog post, so that other people can learn from it.

This post is intended for people that do not know much about Es’hail 2 but are interested in receiving it. If you’ve been investigating about the different setups that people are doing to receive it, then probably you’ll not learn anything new here. The post addresses questions such as “do I need a modified LNB” and similar.

Continue reading “Recommendations for receiving Es’hail 2”

Aircraft reflections of a 2.3GHz beacon

A couple months ago, Andrés Calleja EB4FJV installed a 2.3GHz beacon in his home in Colmenar Viejo, Madrid. The beacon has 2W of power, radiates with an omnidirectional antenna in the vertical polarization, and transmits a tone and CW identification at the frequency 2320.865MHz.

Since Colmenar Viejo is only 10km away from Tres Cantos, where I live, I can receive the beacon with a very strong signal from home. The Madrid-Barajas airport is also quite near (15km to the threshold of runway 18R) and several departure and approach aircraft routes pass nearby, particularly those flying over the Colmenar VOR. Therefore, it is quite easy to see reflections off aircraft when listening to the beacon.

On July 8 I did a recording of the beacon from 10:04 to 11:03 UTC from the countryside just outside Tres Cantos. In this post I will examine the aircraft reflections seen in the recording and match them with ADS-B aircraft position and velocity data obtained from This will show the locations and trajectories which produce reflections strong enough to be detected.

Continue reading “Aircraft reflections of a 2.3GHz beacon”

DSLWP-B’s journey to the Moon: part III

This is a follow-up on the series about DSLWP-B’s orbital dynamics (see part I and part II). In part I we looked at the tracking files published by Wei Mingchuan BG2BHC, which list the position and velocity of the satellite in ECEF coordinates, and presented basic orbit propagation with GMAT. In part II we explored GMAT’s capabilities to plan and perform manoeuvres, making a tentative simulation of DSLWP-B’s mid-course correction and lunar orbit injection. Now we turn to the study of DSLWP-B’s elliptical lunar orbit.

In this post we will examine the Keplerian elements of the orbits described by each of the tracking files published so far. We will also use Scott Tilley VE7TIL’s Doppler measurements of the S-band beacon of DSLWP-B to validate and determine the orbit.

Continue reading “DSLWP-B’s journey to the Moon: part III”

Update on phase noise of 27MHz references

This is a follow up to a previous post where I investigated the phase noise of 27MHz references to be used for a 10GHz receiver. Dieter DF9NP has being kind enough to send me a 10MHz 0.25ppm TCXO to do some more tests.

I’ve connected the 10MHz TCXO to the DF9NP 27MHz PLL and used it to receive the beacon of BADR-5, as I did in the previous post. The phase noise of the 10MHz TCXO + 27MHz PLL can be seen in the following figure.

10MHz 0.25ppm TCXO and 27MHz PLL
10MHz 0.25ppm TCXO and 27MHz PLL

For comparison, see below the phase noise with the DF9NP 10MHz GPSDO and 27MHz PLL. There is not much difference between both. This seems to indicate that the culprit of the phase noise is the 27MHz PLL, as the 10MHz TCXO should be quite clean.

10MHz GPSDO and 27MHz PLL
10MHz GPSDO and 27MHz PLL

Phase noise of a Baofeng UV-5R 10GHz signal

Several of the Baofeng chinese handheld radios generate a weak 10GHz signal while in receive mode. Thus, they are a popular cheap and quick 10GHz signal source for tests. To generate a 10GHz signal, you have to tune the Baofeng to the 70cm band (for instance, 432MHz). The radio will generate a weak 24th harmonic while in receive mode. If you want a steady carrier, you have to set the squelch to zero. Otherwise you will just get beeps as the radio wakes up periodically to check for a signal. Lately, I’ve being investigating phase noise and reciprocal mixing of 10GHz receiver systems. A natural question is how good is the phase noise of a Baofeng used as a 10GHz signal source and whether it can be used to check if the phase noise performance of a receiver is acceptable. It turns out that it is not so noisy as one may first think.

Continue reading “Phase noise of a Baofeng UV-5R 10GHz signal”

Ship reflection on ED5YAE 10GHz beacon

In my previous post, I mentioned the possibility of receiving 10GHz beacons reflecting off ships in the Mediterranean sea through the Paella Team WebSDR, in Alicante. Luis EA5DOM tells me that these reflections happen often. However, I didn’t get any in the time I was doing the recordings for the previous post.

After making much longer recordings, I have seen a couple of reflections. I would say that a dozen or so happen every day. However, they last for quite long. Here you can see a reflection lasting for almost 20 minutes. The Doppler shift ranges between -300Hz and -200Hz. At its strongest moment, the reflection is only 10dB weaker than the beacon.

ED5YAE: direct signal and reflection
ED5YAE: direct signal and reflection

Phase noise of 27MHz references for a Ku-band LNBF

Today, I’ve being measuring the phase noise of the different 27MHz references that I have for my Ku-band LNBF. The LNBF is an Avenger PLL321S-2. I’ve modified it, removing the 27MHz crystal and including a connector for an external 27MHz reference signal. In my lab, I have the following equipment to generate a 27MHz signal:

  • OCXO/Si5351A kit. This kit includes a 27MHz OCXO and a Si5351A frequency synthesizer. The Si5351A can act as a buffer and output the OCXO signal directly or generate a 27MHz clock.
  • A DF9NP 27MHz PLL and a DF9NP GPSDO. The GPSDO generates a 10MHz signal which is locked to GPS. The PLL generates a 27MHz from the 10MHz signal.

I’ve used linrad to receive the beacon of BADR-5 at 11966.2MHz using different references for the 27MHz signal. The AFC in linrad tries to compensate for any drift in the reference or the satellite beacon. By averaging, one can get good plots of the sideband noise of the beacon. This is far from a proper lab test, but it gives a good idea of the performance of the references.

Continue reading “Phase noise of 27MHz references for a Ku-band LNBF”

Hailstorm in 12GHz

Yesterday, there was a big hailstorm in my town. During the storm, I rushed to the radio shack to see if this produced any effects in my Ku-band satellite receiver. This is a 95cm dish pointing to the 26ºE geostationary orbital position, and it will be used to receive Es’hail-2 in the future. In the image below, you can see that the difference is huge.

11699MHz H pol, during a hailstorm (above) and just after the storm (below)
11699MHz H pol, during a hail storm (above) and just after the storm (below)

In the waterfall, you can see several beacons from broadcast satellites. It is clear that during the hailstorm the noise floor was much higher. In fact, 2.5dB higher. This is probably caused by scattering of DVB-S signals from satellites in other orbital positions, scattering of thermal ground noise, or a combination of both. Also, although it is not easy to see in the waterfall, the beacons of the satellites where weaker during the hailstorm. For instance, the beacon of BADR-5 was 0.9dB weaker, due to the increased attenuation caused by hail.

These differences may not seem large, but in fact they are. I have a cheap DVB-S2 decoder connected to the system. It usually receives fine several channels from the BADR satellites (on some other channels, the signal is not good enough, apparently). However, during the hailstorm, this receiver couldn’t even get a lock on the DVB signal.