Voyager-1 single dish detection at Allen Telescope Array

This post has been delayed by several months, as some other things (like Chang’e 5) kept getting in the way. As part of the GNU Radio activities in Allen Telescope Array, on 14 November 2020 we tried to detect the X-band signal of Voyager-1, which at that time was at a distance of 151.72 au (22697 millions of km) from Earth. After analysing the recorded IQ data to carefully correct for Doppler and stack up all the signal power, I published in Twitter the news that the signal could clearly be seen in some of the recordings.

Since then, I have been intending to write a post explaining in detail the signal processing and publishing the recorded data. I must add that detecting Voyager-1 with ATA was a significant feat. Since November, we have attempted to detect Voyager-1 again on another occasion, using the same signal processing pipeline, without any luck. Since in the optimal conditions the signal is already very weak, it has to be ensured that all the equipment is working properly. Problems are difficult to debug, because any issue will typically impede successful detection, without giving an indication of what went wrong.

I have published the IQ recordings of this observation in the following datasets in Zenodo:

Chang’e 5 low rate telemetry

Even though I haven’t been posting updates about Chang’e 5 lately, we have continued tracking it with Allen Telescope Array most weekends since my last post. The main goal of these observations has been to give Bill Gray updated pointing data so that he can refine his ephemerides. Additionally, we have been decoding telemetry from the recordings we’ve made.

One of the interesting things that have happened is the change to a lower baudrate in the telemetry signals. Until 2020-12-27 the baudrate was 4096 baud, while starting with the observation on 2021-01-02 we are seeing a new baudrate of 512 baud. This means that at some point around the end of last year the spacecraft was commanded to switch to a lower baudrate, to account for the increase in path loss caused by the increasing distance as the spacecraft travels towards the Sun-Earth L1 point.

Chang’e 5 observations from ATA on December 19 and 20

As we’ve been doing lately, last weekend we observed the Chang’e 5 orbiter at Allen Telescope Array as part of the GNU Radio community activities in the telescope. This post contains a large overview of these observations, including the efforts to determine the spacecraft orbit, the study of the signal polarization, and the data obtained by decoding the telemetry.

I am still transferring the IQ data from the telescope, but I will publish the recordings in Zenodo in a few days and update this post.

Edit 2021-01-02: the recordings are now published and can be found in the following datasets.

Chang’e 5 reception from ATA on its return trajectory: polarization

This post is a follow up to my previous post about the recordings made by the GNU Radio team at Allen Telescope Array on December 12 and 13. In that post I looked at the telemetry decoding in two full pass observations done last weekend, each of them lasting around 4 to 5 hours.

In this post, I will study the signal polarization in those recording, following the same method as in my previous post about the Chang’e 5 polarization. In these recordings, only the signal at 8471.2 MHz from the orbiter was active.

Chang’e 5 reception from ATA on its return trajectory: telemetry

Last weekend, we did two long observations of Chang’e 5 with one of the dishes from Allen Telescope Array as part of the activities of the GNU Radio community in the telescope. The recordings were done during the UTC evenings on Saturday 2020-12-12 and Sunday 2020-12-13, and almost lasted for all the time that the spacecraft was above 16.8 degrees, which is the elevation mask for the telescope. Since the Moon was at a low declination, the observations were not so long, only around 4 to 5 hours.

On Saturday, the spacecraft had already performed its TEI-1 (trans-Earth injection burn) and was on an elliptical lunar orbit. On Sunday, the spacecraft had performed TEI-2 and was already on its transfer orbit to Earth, and several degrees away from the Moon, as shown by the blue cross in the figure below, done with Stellarium.

Position of Chang’e 5 on the sky on Sunday evening

The IQ recordings of the observations will be published in Zenodo in a few days, since I need to transfer them over the slow internet connection of the telescope. This post will be updated when they are ready.

Update 2020-12-19: The recordings are now published in the following datasets:

In this post, I look at the telemetry decoded from these recordings. Future posts will look at other aspects, such as the polarization of the signal.

Chang’e 5 telemetry from the ATA 2020-11-28 observation

In one of my last posts I’ve analysed a recording I made at Allen Telescope Array of the four low rate telemetry signals of Chang’e 5 during the LOI-2 manoeuvre. The previous day, I did an observation several hours before the spacecraft arrived to the Moon and performed the LOI-1 burn. In this observation I only recorded the signal at 8463.7 MHz (which later we discovered that corresponds to the lander), as it was the strongest of all four. In this post I give the analysis of the telemetry in this recording.

The recording corresponding to this observation will be published in Zenodo, but this will be done in a few days, since I’m still transferring files from the telescope. I’ll update the post when it is published.

Update 2020-12-11: the recording is now published in the following datasets:

Chang’e 5 polarization in the ATA observations

In my previous post, I talked about an observation of Chang’e 5 made with Allen Telescope Array last Sunday, 2020-11-29. I still need to write the report corresponding to the observation from Saturday 2020-11-28. However, before doing so, I thought it would be interesting to look at the polarization of each of the signals in these recordings. As I already advanced, the polarization is not perfect RHCP, but rather elliptical and time varying.

In fact, it seems likely that most of the antennas of Chang’e 5 are not steerable antennas, but rather, patch-like medium-gain or low-gain antennas. These are circularly-polarized only when seen from the front. They are linearly polarized when seen from a side.

Therefore, by studying the polarization of the Chang’e X-band signals, we can try to learn more about the spacecraft’s attitude and its antennas.

Chang’e 5 LOI-2 observed with Allen Telescope Array

If you follow me on Twitter you’ll probably have seem that lately I’m quite busy with the Chang’e 5 mission, doing observations with Allen Telescope Array as part of the GNU Radio activities there and also following what other people such as Scott Tilley VE7TIL, Paul Marsh M0EYT, r00t.cz, Edgar Kaiser DF2MZ, USA Satcom, and even AMSAT-DL at Bochum are doing with their own observations. I have now a considerable backlog of posts to write, recordings to share and data to process. Hopefully I’ll be able to keep a steady stream of information coming out.

In this post I study the observation I did with Allen Telescope Array last Sunday 2019-11-29. During the observation, I was tweeting live the most interesting events. The observation is approximately 3 hours long and contains the LOI-2 (lunar orbit injection) manoeuvre near its end. LOI-2 was a burn that circularized the elliptical lunar orbit into an orbit with a height of approximately 207km over the lunar surface.

Polarimetric observation of 3C286 with Allen Telescope Array

Following my polarimetry experiments at Allen Telescope Array, on October 31 I did a polarimetric observation of the quasar 3C286 with two dishes from the array to use as a test-bed for polarimetric calibration. 3C286 is a bright, compact, polarized source, with a fractional polarization intensity of around 10% and a polarization angle of 33º over a wide range of frequencies, so it makes an ideal source for polarization calibration. It is the primary polarization calibrator for VLA. The observation duration was slightly more than 2 hours, and it was done around the transit of the source, so the parallactic angle coverage is large (around 90º).

My initial idea was to use this observation to perform a “single dish” polarization calibration of each of the dishes by separate (since the math is somewhat simpler) and then perform an interferometric polarization calibration. However, after initial examination of the data, the SNR doesn’t seem large enough to do a “single dish” calibration. The polarized signal from 3C286 is rather weak and is swamped by noise from other sources in the field and from the receiver, and also by gain variations in the receive chain.

On the contrary, the interferometric calibration has worked well, since correlating the signals from the antennas allows us to discard the uncorrelated receiver noise and to phase on the target and discard other signals from the field, by means of Earth rotation aperture synthesis.

In this post I give my analysis and results of the observation. I have done an ad hoc calibration in Python to determine the polarization leakage and measure the polarization degree and angle of the source, and also a full polarimetric calibration in CASA to compare my calibration with one obtained with professional software.

The data used in this post has been published in Zenodo as the dataset “Allen Telescope Array polarimetric observation of 3C286“.

ATA polarimetry test with GNSS satellites

This post belongs to a series about the activities of the GNU Radio community at Allen Telescope Array. For more information about these activities, see my first post.

The feeds in the ATA dishes are dual polarization linear feeds, giving two orthogonal linear polarizations that are called X and Y and (corresponding to the horizontal and vertical polarizations). In the setup we currently have, the two RF signals from a single dish are downconverted to an IF around 512 MHz using common LOs and then sampled by the two channels of a USRP N32x. Since we have two USRPs, we are able to receive dual polarization signals from two dishes simultaneously.

The two USRPs are synchronized with the 10MHz and PPS signals from the observatory, but even in these conditions there will be random phase offsets between the different channels. These offsets are caused by fractional-N PLL states and other factors, and change with every device reset. To solve this problem, it is possible to distribute the LO from the first channel of a USRP N321 into its second channel and both channels of a second USRP N320. In fact, it is possible to daisy chain several USRPs to achieve a massive MIMO configuration. By sharing the LO between all the channels, we achieve repeatable phase offsets in every run.

During the first weekends of experiments at ATA we didn’t use LO sharing, and we finally set it up and tested it last weekend. After verifying that phase offsets were in fact repeatable between all the channels, I did some polarimetric observations of GNSS satellites to calibrate the phase offsets. The results are summarised in this post. The data has been published in Zenodo as “Allen Telescope Array polarimetric observation of GNSS satellites.