BPSK radar received through Meridian 8

Ever since SETI Insitute published the news of a possible signal received from Proxima Centauri in some of the Parkes telescope recordings at 982 MHz, Scott Tilley VE7TIL has taken up the interest to search and catalogue the satellites that transmit on this band (specially old, forgotten and zombie satellites). His idea is to try to see if this candidate signal can be explained as interference from some satellite.

This has led him to discover some signals coming from satellites on a Molniya orbit. After examination with the Allen Telescope Array of these signals, we confirmed that they came from wideband transponders (centre frequency around 995 MHz, 13 MHz width) on some of the Meridian Russian communications satellites (in particular Meridian 4 and 8, but also others).

These transponders show all sorts of terrestrial signals that are relayed as unintended traffic through the transponder. By measuring Doppler we know that the uplink is somewhere around 700 or 800 MHz. We have found some OFDM-like signals that seem to be NB-IoT. Unfortunately we haven’t been able to do anything useful with them, maybe because there are several signals overlapping on the same frequency. We also found a wideband FM signal containing music and announcements in Turkmen, which later turned out to be the audio subcarrier of a SECAM analogue TV channel from Turkmenistan.

A few days ago, Scott detected a pulsed strong signal through the transponder of the Meridians at a downlink frequency of 994.2 MHz. He did an IQ recording of this signal on the downlink of Meridian 8. It turns out that this signal is a BPSK pulse radar. In this post I do a detailed analysis of the radar waveform using this recording.

BY02 telemetry beacon

BY02 (also known as BY70-2) is an Amateur cubesat by the China Aerospace Science and Technology Corporation and Beijing Bayi High School. It was launched on July 3 on a CZ-4B rocket from Taiyuan together with a Gaofen Earth observation satellite. BY02 is intended as a replacement for BY70-1, which was launched on 2016-12-28 and was placed on a short-lived orbit that decayed in a few months because of a launch problem.

Today, Wei Mingchuan BG2BHC announced on Twitter at 09:14 UTC that BY02’s beacon was on and would be left on at least until 12:50 UTC. I believe that this is the first time that the beacon has been on for an extended period of time, since during the early operations the beacon was only active on passes over China.

Since at 11:39 UTC there was a good pass over Spain, I went outside with my handheld Arrow 7 element yagi to do a recording. This post is an in-depth analysis of this recording and includes an explanation of the coding and telemetry format used by BY02.

Plotting spectrum measurements by SMOG-P

The SMOG-P 1P PocketQube that was launched recently has an interesting payload: a UHF spectrum monitor that records power spectral density measurements. Lately, I have been adding support in gr-satellites to decode the telemetry frames transmitted by SMOG-P and ATL-1 (which also carries a similar spectrum monitor), using the code published here as a reference.

As a result of this work, now it is possible to save and plot the spectrum data transmitted by SMOG-P and ATL-1 using gr-satellites. This post explains how.

Receiving a LoRa high altitude balloon

Last Sunday, Julián Fernández EA4HCD, released a high altitude balloon carrying a LoRa payload as a preliminary test for the FossaSat-1 pocketqube that he is devolping with Fossa Systems. You can see a video of the release in this tweet. The balloon was launched near Madrid, and burst at an altitude of approximately 24km, having travelled some 180km southeast.

The payload had two transmitters: An SX1278 LoRa transceiver transmitting at 434.5MHz with 10mW alternating between LoRa and RTTY, and an 868MHz 25mW LoRa transceiver that was received on The Things Network. Simple groundplane 1/4-wave monopole antennas were used.

I went to the countryside just outside my city, Tres Cantos, and set up a station to record the transmissions on 434.5MHz. The station consisted of a 7 element yagi by Arrow Antennas, set in vertical polarization and placed on a camera tripod on the roof of my car, and a FUNcube Dongle Pro+. This is a brief analysis of the recording.

Angle of arrival experiment in 145MHz

On April 28, I got together with a few Spanish radio Amateurs to perform some experiments. One of the things we did was an angle of arrival experiment in the 145MHz Amateur band. The ultimate goal of the experiment was to be able to measure the angle of arrival of meteor reflections of the GRAVES radar at 143.05MHz. However, we also recorded a few other signals, such as the Amateur satellite band at 145.9MHz (intended to perform calibration of the setup) and the APRS terrestrial signals at 144.8MHz.

An overview of IARU R1 interim meeting proposals

The IARU R1 interim meeting is being held in Vienna, Austria, on April 27 and 28. This post is an overview of the proposals that will be presented during this meeting, from the point of view of the usual topics that I treat in this blog.

The proposals can be found in the conference documents. There are a total of 64 documents for the meeting, so a review of all of them or an in-depth read would be a huge work. I have taken a brief look at all the papers and selected those that I think to be more interesting. For these, I do a brief summary and include my technical opinion about them. Hopefully this will be useful to some readers of this blog, and help them spot what documents could be more interesting to read in detail.

NPR: Hamnet over 70cm

Some days ago, Guillaume F4HDK emailed me to introduce me his latest project, NPR (New Packet Radio). This is an open-source modem designed to carry IP traffic over the 70cm Amateur radio band, with data rates of up to 500kbps. The goal of this modem is to be used for the Hamnet Amateur radio IP network, to give access to end users where coverage on the 2.3GHz and 5GHz bands is poor due to the terrain.

Guillaume knew that I had worked on IP over 70cm with my CC1101 and Beaglebone black project, so he wanted to know what I though about NPR. After reading all the available documentation, I found NPR very interesting. Indeed, Guillaume has come up with clever ways of solving some of the difficulties I foresaw when planning out my experiments with the CC1101.

The most important aspect about NPR is that it is already a finished product that people can build as a kit and start using. My experiments with the CC1101 were a mixture of proof of concept and play around, and never progressed from that stage due to lack of interest in my local Amateur community. However, Guillaume has put a lot of time, thought and effort in developing NPR. Of course the project can evolve further, but it is usable in its present stage. In what follows, I do a detailed analysis of the technical aspects of NPR.

Antarctic expedition

As you may know, between January 14 and February 18 I have been away from home on a research expedition to Antarctica. Several people have asked me for a post detailing my experiences, and I was also thinking to write at least something about the trip. I could spend pages talking about the amazing landscapes and fauna, or daily life in Antarctica. However, in keeping with the spirit of this blog, I will concentrate on the radio related aspects of the trip (and there are indeed enough to tell a story). If I see that there is much interest in other topics, I might be persuaded to run a Q&A post or something similar.

Apparently, my trip and my posts in Twitter raised the attention of a few Hungarian Amateurs, who even discussed and followed my adventures in their Google group. Thanks to Janos Tolgyesi HG5APZ for his interest and for some good discussion over email during my voyage.

Batch processing of DSLWP-B Moonbounce: part I

In previous posts I’ve talked about how the DSLWP-B 70cm signal can sometimes be received in the Dwingeloo 25m radiotelescope via a reflection off the Moon’s surface. I’ve studied the geometry of this reflection, the cross-correlation against the direct signal, and even decoded some reflected JT4G.

However, so far the reflection has been detected by hand by looking at the recording waterfalls. We don’t have any statistics about how often it happens or which conditions favour it. I want to make some scripts to process all the Dwingeloo recordings in batch and try to extract some useful conclusions from the data.

Here I show my first script, which computes the power of the direct and reflected signals (if any). The analysis of the results will be done in a future post.

Geometry for DSLWP-B Moonbounce

I have already spoken about the Moonbounce signal from DSLWP-B in several posts. To sum up, DSLWP-B is a Chinese satellite that is orbiting the Moon since May 25. The satellite has an Amateur payload that transmits GMSK and JT4G telemetry in the 70cm Amateur satellite band. This signal can be received by well equipped groundstations on Earth, including the 25m radiotelescope at Dwingeloo, in the Netherlands (and also by much smaller stations).

The people at Dwingeloo publish the recordings that they make of the RF signal. In two of these recordings, the signal from DSLWP-B is received not only via the direct path, but also through a reflection off the Moon’s surface. The reflected signal is around 25dB weaker, usually has a different Doppler shift, and has a Doppler spread of around 50 to 200Hz.

What I find most interesting about this is that of all the days that Dwingeloo has observed DSLWP-B, in only two of them (on 2018-10-07 and 2018-10-19) the Moonbounce signal has been visible. Mathematically, using a specular reflection on a sphere model, whenever the satellite is visible directly, there is also a ray from the spacecraft that reflects off the lunar surface and arrives at the groundstation (see the proof here). Therefore, I think that there must be something about the particular geometry of the days 7th and 19th that made the Moon reflections relatively stronger and hence detectable. Here I use GMAT to study the orbital geometry when the reflections were received.