Weekend maintenance to QO-100 NB beacons

This weekend, the beacons of the Es’hail 2 narrowband transponder have undergone maintenance. The beacons have been off for several periods of a few hours on Friday and Saturday. After the maintenance, there are two main changes: the phase noise of the beacons has been fixed, and the beacons are now approximately 3dB stronger.

Since the opening of the transponder on February 14, some phase noise on the two beacon signals was appreciable slightly above the noise floor, and with the latest increase in power of the beacons, the phase noise was more evident. Now the problem is fixed and the transponder is clear of phase noise.

The figure below shows the power of the beacons and transponder noise (measured in 2kHz bandwidth). You can see that the beacon power has daily fluctuations of up to 2dB, but despite of this fact it is clear that the beacons are now approximately 3dB stronger than before (maybe even 4dB).

The figure below shows the CN0 of the beacons, measured both at the transponder and at my receiver (where it is lower due to system noise). The CN0 is now extremely high: 56dB for the BPSK beacon. In a previous post I thought about what could be done with 45dB of CN0. The conclusion was that if you want to fit a digital signal in an SSB channel bandwidth, you are much more bandwidth-limited than SNR-limited. This is now even more true.

With the increased beacon power, it should be fairly easy to decode the beacons with a bare LNB, even despite the fact that the transponder gain has been reduced twice. Also, now that the SNR of the beacons is so high, there is no excuse for being louder than the beacon. Anyone who is stronger than the beacon is most likely using too much power. Their mode of choice probably works equally well with several dB less of SNR.

Changes to the QO-100 NB transponder settings

Yesterday, AMSAT-DL announced that the narrowband transponder of QO-100 was under maintenance and that some changes to its settings would be made. This was also announced by the messages of the 400baud BPSK beacon. Not much information was given at first, but then they mentioned that the transponder gain was reduced by 6dB and a few hours later the beacon power was increased by 5dB.

Since I am currently doing continuous power measurements of the transponder noise and the beacons, when I arrived home I could examine the changes and determine using my measurements that the transponder gain was reduced by 5dB (not 6dB) at around 15:30 UTC, and then the uplink power of the beacons was increased by 5dB at around 21:00 UTC, thus bringing the beacons to the same downlink power as before. In what follows, I do a detailed analysis of my measurements.

Antarctic expedition

As you may know, between January 14 and February 18 I have been away from home on a research expedition to Antarctica. Several people have asked me for a post detailing my experiences, and I was also thinking to write at least something about the trip. I could spend pages talking about the amazing landscapes and fauna, or daily life in Antarctica. However, in keeping with the spirit of this blog, I will concentrate on the radio related aspects of the trip (and there are indeed enough to tell a story). If I see that there is much interest in other topics, I might be persuaded to run a Q&A post or something similar.

Apparently, my trip and my posts in Twitter raised the attention of a few Hungarian Amateurs, who even discussed and followed my adventures in their Google group. Thanks to Janos Tolgyesi HG5APZ for his interest and for some good discussion over email during my voyage.

DSLWP-B camera planning for February 3 and 4

As you may know, I am on a scientific expedition in Antarctica until mid-February. Currently I am in the Spanish base Gabriel de Castilla, where we have relatively good satellite internet access. As I have some free time here, I have updated the DSLWP-B camera planning to reflect the upcoming observations announced by Wei Mingchuan BG2BHC on 2019-02-03 14:30 and 2019-02-04 08:20.

As we can see in the figure below, the Earth will be very near to the centre of the image, since there is a new Moon on February 4 (recall that the DSLWP-B camera points away from the Sun, so the Earth is visible on the camera when there is a new Moon, as the Earth is then opposite to the Sun, as seen from the Moon).

The observation times have been selected taking into account the orbit around the Moon, so that the Moon is also visible on the image. On February 3 the Moon should be completely visible inside the camera field of view. On the contrary, on February 4, the Moon will only be partially visible inside the frame.

The figure below shows the angular distance between the centre of the Earth and the rim of the Moon. This kind of graph can be used to compute the times when the Earth crosses the Moon rim, allowing us to take an “Earthrise” image. There is an Earthrise event on February 4, during the time when the Amateur payload is active. Generally, an image is taken whenever the Amateur payload powers up, but in this case it could be possible to command the payload manually to take an image near the Earthrise event.

The figure below shows in detail the Earthrise event, with both edges of the Earth plotted. It seems that a good time to take the Earthrise image is on 2019-02-04 10:00 UTC.

Es’hail 2 stationed in 26ºE

If you’ve been following my posts about Es’hail 2, you’ll know that shortly after launch Es’hail 2 was stationed in a test slot at 24ºE. It remained in this slot until December 29, when it started to move to its operational slot at 26ºE. As of January 2, Es’hail is now stationed at 26ºE (25.8ºE, according to the TLEs).

The new GEO orbit at 26ºE is much more perfect than the orbit it had at 24ºE. This is to be expected for an operational orbit. Since December 30, I’ve been recording Doppler data of the satellite moving to its operational slot, and I have found some interesting effects of orbital dynamics in the data. This post is an account of these.

In-orbit testing of Es’hail 2 Amateur transponders

Yesterday, December 23, MELCO carried out some in-orbit tests of the Es’hail 2 Amateur radio transponders. Since Es’hail 2 is currently under commissioning, it was expected that at some point the Amateur transponders would be activated for testing, but no announcement of the tests was done in advance. At around 11:00 UTC, Rob Janssen PE1CHL, noticed that the narrowband transponder was active and a carrier signal was being transmitted through it.

Since then, I monitored most of the tests and sent updates on Twitter, together with other people (see also the posts in the AMSAT-DL forum). Without knowing the details of the test plans, we limited ourselves to watching and following the tests that were being made. If some schedule of the tests had been published in advanced, we could have thought, prepared and performed some interesting measurements on the downlink signals.

I understand that since these tests are carried out by MELCO, AMSAT-DL might not have the specific details, but still I think that AMSAT-DL is publishing very little information about Es’hail 2 events. It was only at 22:35 UTC that AMSAT-DL published a small note on Twitter about the tests. I think the greatest concern is that people start transmitting through the transponder, interfering with the tests. However, since news spread very fast these days through social media, I think that publishing more information rather than keeping things discreetly serves better to prevent people from using the transponder during the commissioning. In any case, I’ll repeat it here:

Es’hail 2 is currently under commissioning. The 2.4GHz uplink of the Amateur transponders should never be used until authorized by AMSAT-DL. The Amateur transponders will sometimes be enabled for in-orbit testing by the MELCO/Es’hailSat/AMSAT-DL engineers. Relax, sit back, and watch the tests on the 10GHz downlink.

I also think that publishing more information would be beneficial to educate the community of radio Amateurs. Some people have asked me about the concept of in-orbit tests. After a satellite is launched into orbit, the performance of all its systems is tested to ensure that it matches design specifications, simulations, and pre-launch tests done on ground. This is important to guarantee that any problems, malfunction or damage that occurred during the launch can be diagnosed and hopefully mitigated by activating backup systems or other reliability measures. In-orbit testing of large satellites can take several months, since there are many complex systems that need to be tested remotely.

In the case of the Amateur radio payload of Es’hail 2, MELCO is carrying out the tests, since the payload was built by MELCO according to the design specifications by AMSAT-DL. The kind of tests they are performing are related to the performance of the bent-pipe transponders. They sweep in frequency the transponders to make sure that the passband shape is as expected. They transmit carriers of different power levels to check for linearity of the transponder and AGC performance, and they try different gain/power level settings of the transponder power amplifier to make sure it performs correctly over all its working range.

This is a rough account of the tests that were made yesterday, using my tweets as a sort of activity log.

December DSLWP-B camera planning

It is again the beginning of the month, which means that the Earth will be in view of the Inory eye camera on board DSLWP-B. As usual, I have updated my camera planning notebook to compute the location of the Moon and Earth, as seen from the camera.

Wei has already scheduled observations on 2018-12-06 11:20 UTC and 2018-12-07 08:30 UTC. On each of these observations, an image will be taken at the start of the observation and the UHF transmitter will be activated for 2 hours.

I have used the 20181128 tracking file from dslwp_dev as orbital state for the calculations. As the date of the observations comes nearer, I might rerun the computations with updated ephemeris data, but this time it doesn’t seem critical to estimate the orbit with precision. In November, there were occultations of the Earth behind the lunar disc, and the times for these depended a lot on the orbital state. In December there will be no occultations, however.

The figure below shows the prediction for the camera view in the scheduled observations. On the 6th, the Earth will come close to the edge of the Moon. On the 7th, the Earth will be closest to the camera centre since we started planning and taking images in October.


Es’hail 2 launch in GMAT

After a long wait by many Amateur radio operators, Es’hail 2, the first geostationary satellite carrying an Amateur radio transponder launched yesterday on a SpaceX Falcon 9 Full Thrust from the historical LC-39A pad in Kennedy Space Centre, which was used by many Apollo and Space Shuttle launches in the past.

Es’hail 2 is the second communications satellite operated by the Qatari company Es’hailSat. It was built by Mitsubishi Electric Corporation (MELCO). It carries several Ku and Ka band transponders intended for digital television, Internet access and other data services. It also carries an Amateur radio payload designed by AMSAT-DL, in collaboration with the Qatar Amateur Radio Society. The payload has two transponders, with S-band uplink and X-band downlink. One of the transponders is 250kHz wide and intended for narrowband modes, and the other one is 8MHz wide and intended for DVB-S and other wideband data modes.

SpaceX live-streamed the launch, and the recording can be seen in YouTube. Today, Space-Track has published the first TLEs for Es’hail 2 and the second stage of the Falcon 9 rocket. Here I look at these TLEs using GMAT.

November DSLWP-B images of the Moon and Earth

141

In previous posts, I have already spoken about the chance of DSLWP-B taking images of the Moon and Earth during the beginning of November. The window to take these images was between November 6 and 9. This window included the possibility of taking an Earthrise image, with the Earth appearing from behind the Moon.

The planning for the activations of the Amateur payload made by Wei Mingchuan BG2BHC was as follows.

7 Nov 2018 08:13 to 7 Nov 2018 10:13
8 Nov 2018 09:40 to 8 Nov 2018 11:40
9 Nov 2018 12:00 to 9 Nov 2018 14:00
10 Nov 2018 14:00 to 10 Nov 2018 16:00
11 Nov 2018 13:30 to 11 Nov 2018 15:30

On November 7, from 8:13 to 9:33 UTC, a total of 9 images with 10 minutes of spacing between each would be taken. These images would be downloaded during the activations on the next days. As usual, an image would also be taken when the Amateur payload powered up on November 8 to 11, but the main focus was on downloading the sequence of images taken on November 7. This is a complete report of the images taken and downloaded.

Updated DSLWP-B camera planning

In my last post, I detailed the DSLWP-B camera planning for the beginning of November. There, I used orbital state taken from the 20181027 tracking file to compute good times to take images of the Moon and the Earth, especially looking for an Earthrise-like image.

Now that the planned dates are closer, it is good to rerun the calculations with a newer orbital state. It turns out that there has been an important change in the mean anomaly, which shifts all the predictions by a few hours.