How to compute the symbol error rate rate of an m-FSK modulation is something that comes up in a variety of situations, since the math is the same in any setting in which the symbols are orthogonal (so it also applies to some spread spectrum modulations). I guess this must appear somewhere in the literature, but I can never find this result when I need it, so I have decided to write this post explaining the math.
Here I show an approach that I first learned from Wei Mingchuan BG2BHC two years ago during the Longjiang-2 lunar orbiter mission. While writing our paper about the mission, we wanted to compute a closed expression for the BER of the LRTC modulation used in the uplink (which is related to \(m\)-FSK). Using a clever idea, Wei was able to find a formula that involved an integral of CDFs and PDFs of chi-squared distributions. Even though this wasn’t really a closed formula, evaluating the integral numerically was much faster than doing simulations, specially for high \(E_b/N_0\).
Recently, I came again to the same idea independently. I was trying to compute the symbol error rate of \(m\)-FSK and even though I remembered that the problem about LRTC was related, I had forgotten about Wei’s formula and the trick used to obtain it. So I thought of something on my own. Later, digging through my emails I found the messages Wei and I exchanged about this and saw that I had arrived to the same idea and formula. Maybe the trick was in the back of my mind all the time.
Due to space constraints, the BER formula for LRTC and its mathematical derivation didn’t make it into the Longjiang-2 paper. Therefore, I include a small section below with the details.