LTE-M is a family of several configurations supported by LTE for machine-to-machine and IoT communications. In this post I will talk specifically about BL/CE (bandwidth reduced low complexity / coverage enhancement), which is also known as LTE Cat M1. The main difference between a BL/CE UE and a regular LTE UE is that a BL/CE UE only supports a bandwidth of 1.4 MHz (in practice, 6 resource blocks, or 1.08 MHz) and can be half-duplex. These limitations reduce the cost, size and power of the UE, but require additional techniques to handle them.
If we think about the downlink, there are several signals that occupy the whole cell bandwidth, which is usually larger than 1.4 MHz. These are the PDCCH (physical downlink shared channel), the PCFICH (physical control format indicator channel) and the PHICH (physical hybrid-ARQ indicator channel). A BL/CE UE cannot receive any of these, so alternative signals must be used to provide similar functionality. Additionally, a BL/CE UE needs guard intervals in the time domain to support retuning of the 1.4 MHz slice in which the UE operates, and transmit/receive switching for half-duplex UEs. Another distinguishing feature of BL/CE is that messages are often repeated multiple times in order to support working with worse signal conditions than what is possible with a regular UE.
In LTE, the PSS and SSS (primary synchronization signal and secondary synchronization signal), as well as the PBCH (physical broadcast channel) occupy the central 6 resource blocks, so a BL/CE UE can synchronize to the cell and decode the MIB transmitted in the PBCH. The next step that a regular UE would perform is to monitor the PDCCH, first to find a SIB1 transmission (which is transmitted in the PDSCH), and then the rest of the SIBs (whose transmission schedule is listed in the SIB1). A BL/CE UE cannot do this, because it cannot receive the PDCCH and because the SIB PDSCH transmissions might be wider than 6 resource blocks. Therefore, in a cell that supports BL/CE UEs there are also SIB-BRs (BR stands for bandwidth reduced), which BL/CE UEs use instead of the regular SIBs. The SIB-BRs occupy 6 resource blocks and do not require receiving the PDCCH to be decoded. In this post I will use my recording of an LTE eNB to show how to decode the SIB-BRs, and other important aspects of BL/CE UEs.