During the DSLWP-B (Longjiang-2) mission, we made a number of VLBI observations of the spacecraft’s UHF signal by performing GPS-synchronized recordings at Dwingeloo (The Netherlands), Shahe and Harbin (China), and Wakayama (Japan). The basic measurement for these observations is the time difference of arrival (TDOA), which measures the differences between the time that it takes the spacecraft’s signal to arrive to each of the groundstations. This can be interpreted in terms of the difference of distances between the spacecraft and each groundstation, so this measurement is also called delta-range.
One very interesting practical application of the VLBI observations is to perform orbit determination. The delta-range measurements can be used to constrain and determine the state vector of the spacecraft. This would give us an autonomous means of tracking Amateur deep-space satellites, without relying on ranging by a professional deep-space network. Even though the measurements we made showed good agreement with the ephemerides computed by the Chinese deep-space network, during the mission we never ran orbit determination with the VLBI observations, mainly due to the lack of appropriate software.
While GMAT has good support for orbit determination, it doesn’t support delta-range measurements. Its basic orbit determination data type is two-way round-trip time between a groundstation (or two) and the satellite, as shown in the orbit determination tutorial.
I have started to modify GMAT in the gmat-dswlp Github repository to implement the support for this kind of VLBI observations. As a first step, I am now able to create and simulate delta-range observations.