Decoding IEEE 802.11ah

Since some time, I’ve been thinking about doing something similar to my posts about LTE and 5G NR, but for WiFi (IEEE 802.11). In these posts, I take a signal recording and write a Jupyter notebook from scratch to analyze the signal and decode the data. I use these posts as a way of learning all the details of how these standards work, and I have seen that some people find them very useful.

Recently I was taking a look at a baby monitor camera system, composed by a camera and a monitor screen, since I was curious about how the camera transmits the video. Using Maia SDR, I located the signal at 866 MHz and realized that both the camera and the monitor screen were transmitting OFDM packets of approximately 2 MHz of bandwidth on this frequency. With some cyclostationary analysis, I found that the subcarrier spacing was 31.25 kHz (which works out to be 2 MHz / 64 FFT points), and that the cyclic prefix was 1/4 of the useful symbol duration. This pointed me straight to IEEE 802.11ah (WiFi HaLow), a variant of WiFi designed for the 800 MHz and 900 MHz license-exempt bands. After comparing the packet formats on the 802.11ah standard with the waterfall of my recording, I was sure that this was indeed 802.11ah. What started as a fun and short signal recording experiment has ended up going through the rabbit hole of implementing 802.11ah decoding from scratch in a Jupyter notebook. In this post I explain my implementation and the analysis of this recording.

Analysis of DME signals

You might remember that back in July I made a recording of the DME ground-to-air and air-to-ground frequencies for a nearby VOR-DME station. In that post, I performed a preliminary analysis of the recording. I mentioned that I was interested in measuring the delay between the signals received directly from the aircraft and the ground transponder replies, and match these to the aircraft trajectories. This post is focused on that kind of study. I will present a GNU Radio out-of-tree module gr-dme that I have written to detect and measure DME pulses, and show a Jupyter notebook where I match aircraft pulses with their corresponding ground transponder replies and compare the delays to those calculated from the aircraft positions given in ADS-B data.

Not-LoRa GRCon24 CTF challenge

This year I submitted a track of challenges called “Not-LoRa” to the GRCon 2024 Capture The Flag. The idea driving this challenge was to take some analog voice signals and apply chirp spread spectrum modulation to them. Solving the challenge would require the participants to identify the chirp parameters and dechirp the signal. This idea also provided the possibility of hiding weak signals that are below the noise floor until they are dechirped, which is a good way to add harder flags. This blog post is an in-depth explanation of the challenge. I have put the materials for this challenge in this Github repository.

To give participants a context they might already be familiar with, I took the chirp spread spectrum parameters from several common LoRa modulations. These ended up being 125 kHz SF9, SF11 and SF7. LoRa is somewhat popular within the open source SDR community, and often there are LoRa challenges or talks in GRCon. This year was no exception, with a Meshtastic packet in the Signal Identification 7 challenge, and talks about gr-lora_sdr and Meshtastic_SDR.

LTE uplink: PUSCH

This post belongs to my series about LTE. In the LTE uplink, the PUSCH (physical uplink shared channel) is the channel used to trasmit data from the UEs (phones) to the eNB (base station). It plays a role analogous to the PDSCH (physical downlink shared channel), which is used to transmit data in the downlink. In this post I will decode the PUSCH in a recording that I made of my phone uplink a couple years ago.

The PUSCH uses the same kind of techniques as the PDSCH for transport block coding, so all the Turbo code implementation and related algorithms from my post about the PDSCH will be re-used here. However, there is an important difference between the PDSCH and the PUSCH that makes decoding the PUSCH much harder. The LTE downlink is, in a certain sense, a self-descriptive signal. The UEs don’t know in advance the configuration that will be used to transmit each transport block in the PDSCH, because the eNB decides it on the fly. Therefore, the eNB announces PDSCH transmissions in the PDCCH (physical downlink control channel).

When I decoded the PDCCH and PDSCH, the only slightly clever thing that I had to do was to find the RNTIs (radio network temporary indicators). These are 16-bit numbers that are used to address each PDSCH transmission. There are some of them which are statically allocated to some broadcast purpose (SI-RNTI, P-RNTI, RA-RNTI), and the C-RNTIs, which are individually assigned to each UE. The CRC-16 of the PDCCH DCIs is XORed with the RNTI to which the transmission is addressed. At any time, a UE knows the set of RNTIs that it is monitoring, so it calculates the CRC-16 of the received DCI, computes its XOR with each of its assigned RNTIs, and compares the result with the CRC-16 in the DCI. If there is a match, the DCI is accepted. This is a way of filtering out messages without spending additional bits to put the RNTI in a field in the DCI.

When we are monitoring an LTE downlink, we don’t know which RNTIs are being used. With some cleverness, if the SNR is good enough, we can detect and select each PDCCH transmission by hand (it is necessary to guess the REGs that it occupies and the DCI length) and then, assuming that we have decoded the DCI with no bit errors, obtain the RNTI as the XOR of the calculated CRC and the received CRC. This is what I did in the post about the PDCCH. If we were monitoring the LTE downlink for a longer time, this trick wouldn’t even be necessary. The C-RNTIs assigned to the UEs are communicated to them in a RAR transmitted with the RA-RNTI, as a response to their PRACH (see the post where I analyze this in Wireshark). So a downlink monitor application can simply watch the SI-RNTI, P-RNTI and RA-RNTI, and add any C-RNTIs to a list of known connected UEs when it sees a RAR. The C-RNTIs can be removed from this list after a period of inactivity, because the UE would have been sent to the idle state by the network. This idea really shows that it is possible to decode everything in the LTE downlink without doing clever blind decoding tricks.

In contrast, the LTE uplink is not self-descriptive. The eNB defines the configuration of each PUSCH transmission when it sends the uplink grant to the UE. So the UE doesn’t need to communicate this configuration again to the eNB when it transmits in the PUSCH. The information that describes the PUSCH transmissions is effectively in the PDCCH in the downlink, and in this case I don’t have a recording of the downlink that matches my uplink recording. This makes decoding the PUSCH much more difficult, but nevertheless not impossible. With some clever ideas and blind decoding tricks we can usually find all the information we’re missing. In the rest of this post, I describe how to do this in detail. It will be long and quite technical.

Computing PLL coefficients

Whenever I implement a PLL or a similar control loop, I invariably consult the formulas in the paper Controlled-Root Formulation for Digital Phase-Locked Loops, by Stephens and Thomas. Other sources that give formulas for the loop coefficients in terms of the loop bandwidth perform a continuous time analysis and then use a bilinear transform or a similar kind of transform to translate results between continuous time and discrete time. The appeal of the paper by Stephens and Thomas is that they work directly in discrete time, using a beautiful complex contour integral argument to calculate the loop bandwidth in terms of the loop coefficients for a loop of any order. Unfortunately, their method doesn’t give a closed-form formula for the loop coefficients in terms of the loop bandwidth. The loop coefficients can be obtained numerically, and the paper gives tables for common loop bandwidths and orders.

In most of my designs I use a second order loop with supercritical damping, which means that the two loop roots in the z-plane are equal (and hence real). As I was doing a design the other day, I wondered whether in this specific situation, which is much simpler than the general case, a closed-form solution could be obtained. It turns out that this is the case, so I’ll be using this formula from now on. In this short post I explain how this is done and give the formula.

Maia SDR DDC

I have implemented an FPGA DDC (digital downconverter) in Maia SDR. Intuitively speaking, a DDC is used to select a slice of the input spectrum. It works by using an NCO and mixer to move to the centre of the slice to baseband, and then applying low-pass filtering and decimation to reduce the sample rate as desired (according to the bandwidth of the slice that is selected).

At the moment, the output of the Maia SDR DDC can be used as input for the waterfall display (which uses a spectrometer that runs in the FPGA) and the IQ recorder. Using the DDC allows reaching sample rates below 2083.333 ksps, which is the minimum sample rate that can be used with the AD936x RFIC in the ADALM Pluto (at least according to the ad9361 Linux kernel module). Therefore, the DDC is useful to monitor or record narrowband signals. For instance, using a sample rate of 48 ksps, the 400 MiB RAM buffer used by the IQ recorder can be used to make a recording as long as 36 minutes in 16-bit integer mode, or 48 minutes in 12-bit integer mode. With such a sample rate, the 4096-point FFT used in the waterfall has a resolution of 11.7 Hz.

In the future, the DDC will be used by receivers implemented on the FPGA, both for analogue voice signals (SSB, AM, FM), and for digital signals. Additionally, I also have plans to allow streaming the DDC IQ output over the network, so that Maia SDR can be used with an SDR application running on a host computer. It is possible to fit several DDCs in the Pluto FPGA, so this would allow tuning independently several receivers within the same window of 61.44 MHz of spectrum. In the rest of this post I describe some technical details of the DDC.

Decoding LTE MIMO with a single antenna

In my previous post I decoded LTE PDSCH (physical downlink shared channel) transmissions from an IQ recording that I had made of an eNB recording using an USRP B205mini and a single antenna. The eNB has two antenna ports, and it uses TM4 (closed-loop spatial multiplexing) to transmit the PDSCH to each individual UE. In the post, I repeated several times that two-codeword TM4 is intended for 2×2 MIMO and relies on the receiver having at least 2 antennas in order to separate the two transmitted codewords, so I couldn’t decode these transmissions with my recording.

In this post I will show that in some cases this is not true, and these two-codeword TM4 transmissions can be decoded with just one receive antenna. I will decode some of these two-codeword transmissions from my IQ recording by using the ideas I introduce below.

LTE downlink: PDSCH

This post is a continuation of my series about LTE, where I decode a recording of the downlink signal of an eNB using Jupyter notebooks written from scratch. Here I will decode the PDSCH (physical downlink shared channel), which contains the data transmitted by the eNB to the UEs, including PDUs from the MAC layer, and some broadcast information, such as the SIB (system information block) and paging. At first I planned this post to be about decoding the SIB1. This is the first block of system information, and it is the next thing that a UE must decode after decoding the MIB (located in the PBCH) to find the configuration of the cell. The SIB1 is always transmitted periodically, and its contents and format are relatively well known a priori (as opposed to a user data transmission, which could happen at any time and contain almost anything), so it is a good example to try to decode PDSCH transmissions.

After writing and testing all the code to decode the SIB1, it was too tempting to decode everything else. Even though at first I wrote my code thinking only about the SIB1, with a few modifications I could decode all the PSDCH transmissions (except those using two-codeword spatial multiplexing, since my recording was done with a single antenna). I will still use the SIB1 as an example to show how to decode the PDSCH step by step, but I will also show the rest of the data.

The post is rather long, but we will get from IQ samples to looking at packets in Wireshark using only Python, so I think it’s worth its length.

A modern implementation of the Parks-McClellan FIR design algorithm

The Parks-McClellan FIR filter design algorithm is used to design optimal FIR filters according to a minimax criterion: it tries to find the FIR filter with a given number of coefficients whose frequency response minimizes the maximum weighted error with respect to a desired response over a finite set of closed sub-intervals of the frequency domain. It is based on the Remez exchange algorithm, which is an algorithm to find uniform approximations by polynomials using the equioscillation theorem. In signal processing, the Parks-McClellan algorithm is often call Remez. This algorithm is a very popular FIR design algorithm. Compared to the windowing method, which is another commonly used algorithm, it is able to obtain better filters (for instance, meeting design constraints with less coefficients), in part because it allows the designer to control the passband ripple and stopband attenuation independently by means of the weight function.

I have been laying some groundwork for Maia SDR, and for this I will need to run the Parks-McClellan algorithm in maia-httpd, the piece of software that runs in the Pluto ARM CPU. To evaluate what implementation of this algorithm to use, I have first gone to the implementations that I normally use: the SciPy remez function, and GNU Radio’s pm_remez function. I read these implementations, but I didn’t like them much.

The SciPy implementation is a direct C translation of the original Fortran implementation by McClellan, Parks and Rabiner from 1973. This C translation was probably written decades ago and never updated. The code is very hard to read. The GNU Radio implementation looks somewhat better. It is a C implementation that was extracted from Octave and dates from the 90s. The code is much easier to follow, but there are some comments saying “There appear to be some problems with the routine search. See comments therein [search for PAK:]. I haven’t looked closely at the rest of the code—it may also have some problems.” that have seemingly been left unattended.

Because of this and since I want to keep all the Maia SDR software under permissive open source licenses (the GNU Radio / Octave implementation is GPL), I decided to write from scratch an implementation of the Parks-McClellan algorithm in Rust. The result of this has been the pm-remez crate, which I have released recently. It uses modern coding style and is inspired by recent papers about how to improve the numerical robustness of the Parks-McClellan algorithm. Since I figured that this implementation would also be useful outside of Maia SDR, I have written Python bindings and published a pm-remez Python package. This has a few neat features that SciPy’s remez function doesn’t have. The Python documentation gives a walkthrough of these by showing how to design several types of filters that are commonly used. This documentation is the best place to see what pm-remez is capable of.

The rest of this post has some comments about the implementation and the things I’ve learned while working on this.

LTE Transmission Mode 4 (closed-loop spatial multiplexing)

This is a long overdue post. In 2022, I wrote a series of posts about LTE as I studied its physical layer to understand it better. In the last post, I decoded the PDCCH (physical downlink control channel), which contains control information about each PDSCH (physical downlink shared channel) transmission. I found that, in the recording that I was using, some PDSCH transmissions used Transmission Mode 4 (TM4), which stands for closed-loop spatial multiplexing. For an eNB with two antenna ports (which is what I recorded), this transmission mode sends either one or two codewords simultaneously over the two ports by using a precoding matrix that is chosen from a list that contains a few options. The choice is done by means of channel-state information from the UE (hence the “closed-loop” in the name).

In the post I found a transmission where only one codeword was transmitted. It used the precoding matrix \([1, i]^T/\sqrt{2}\). This basically means that a 90º phase offset is applied to the two antenna ports as they simultaneously transmit the same data. I mentioned that this was the reason why I obtained bad results when I tried to equalize this PDSCH transmission using transmit diversity in another previous post, and that in a future post I would show how to equalize this transmission correctly. I have realized that I never wrote this post, so now it is as good a time as any.