Receiving Ku-band geostationary satellite beacons

After sorting out some problems with several connectors which caused huge phase noise in the external 27MHz reference, I have my 10GHz receiver up and running as it should. This station will be used to receive Es’hail-2 in the future. The station is composed of a 95cm offset dish, an Avenger PLL321S-2 Ku-band LNBF modified to use an external 27MHz reference, an OCXO/Si5351A kit used as the 27MHz reference, an RTL-SDR, and a cheap DVB-S2 receiver as a power supply (this allows me to change polarizations and LO frequency easily).

The dish is pointing to the 26ºE or 25.5ºE orbital position, where Es’hail-2 will be. Actually, I have pointed the dish to peak the beacon from BADR-5 the best I can. To test the performance of the station, I have tried to receive the beacons from several Ku-band satellites. Here are the results.

First signals from AAUSAT-4

Today I woke up early to receive the signals from AAUSAT-4 as it passed over Spain for the first time. This satellite was launched from Kourou yesterday at 21:02UTC into a Sun-synchronous orbit. The main payload for the launch was Sentinel-1B, a 5GHz Synthetic Aperture Radar satellite from the Copernicus project of the ESA. The remaining satellites that were launched by the Soyuz rocket were Microscope, from the French CNES, designed to test Einstein’s equivalence principle and the three cubesats in the Fly You Satellite! program: OUFTI-1, from the University of Liège, which carries a D-STAR amateur radio transponder, e-st@r-II, from the University of Torino, and AAUSAT-4, from the University of Aalborg, which carries an AIS receiver. Since the launch was into a polar orbit, the first pass of the Fly Your Satellite! cubesats over Spain was at 05:42UTC today.

Outputting the crystal oscillator directly in the Si5351

I’m using a OCXO/Si5351A kit as an external 27MHz reference for my LNBF-based 10GHz receiver. At first, I intended to use a buffer amplifier to take out directly the 27MHz cyrstal oscillator in the kit. However, I finally configured the Si5351A to generate 27MHz, as that was simpler.

Taking a look today at the documentation for the Si5351, I’ve realised that it is possible to configure the Si5351 to connect some of its outputs directly to the crystal oscillator input, acting as a buffer and bypassing all the frequency synthesis stages. To do this, XO_FANOUT_EN, which is bit 6 in register 187 “Fanout enable”, must be set to 1. The selector CLKn_SRC, which is bits 3 and 2 of clock control register (registers 16-23), is set to 00 (XTAL source) on reset, so this is already set correctly. It is probably a good idea to set CLKn_IDRV to 11 to get the highest drive strength on the output pin.

Adjusting TX gain in the FT-817ND

If you’ve been following my latests posts, you’ll know that during the last V-UHF contest I detected reduced output power on the 70cm band in my FT-817ND. The output power was only about 60% of the maximum 5W in SSB and CW, but in FM mode it reached 5W. This problem only happened on the 70cm band. On all the other bands, the radio reached 5W output power in every modes. After spending some time studying the service manual, I came to the conclusion that the problem was that TX gain in the UHF band was too low. This is a software calibration parameter, so, in the end, fixing this problem has been rather easy.

Replacing the fuse F1002 in the FT-817ND

On last Saturday’s V-UHF contest I observed reduced output power on the 70cm band in my FT-817ND. I spent the next day poking inside the radio with the oscilloscope trying to see where the problem was. While doing this, at some point I completely lost output power in all bands. I found that the problem was that F1002, an SMD fuse, had gone open. Here I describe said fuse and the replacement procedure, which I found much easier than I thought.

Concurso Costa del Sol V-UHF 2016

Yesterday, my father and I hiked to Cerro de San Pedro, SOTA summit EA4/MD-020 (1425m), to work QRP in this month’s national V-UHF contest: Concurso Costa del Sol. Since the forecast for Sunday was rainy, I decided to go up on Saturday’s afternoon. The summit is a short hike from a nearby road. We arrived to the summit around 14:25UTC, so I could work in the contest for a bit more than two hours until we started packing at 17:00UTC before it got too dark.

Activity seemed a little low, although this is not surprising, given that the national RTTY contest was also running at the same time. I also get the impression that there is more activity on Sunday mornings. Nevertheless, my results have been better than in March’s contest. I did fewer QSOs, but got more points and worked more DX. In fact, I could work almost everybody I heard. In the map below, as always, my location is marked in red, the stations in blue are those worked only in 144MHz and the ones in green where worked both in 144MHz and 432MHz.

Arduino LED driver: prototype finished

Today I’ve finished my prototype of the Arduino LED driver. I had already soldered and tested all the components quite a while ago, but I ran out of connectors for the LED strings, so I had to wait for more to arrive from China.

This project uses an Arduino-compatible ATmega328P and is able to drive up to 18 regular LED strings using the BCR420UW6 linear driver and 4 high-power LED strings using the AL8808 switching driver. The intended application is programmable lightning, such as Christmas or party lights.

PCB front
PCB front

Scanning Ku band satellites with the FUNCube Dongle

I’ve recently installed my satellite dish and modified LNBF in my garden. This equipment will be used to receive Es’hail 2, the first geostationary satellite carrying an amateur radio transponder. Here I’ll look at the hardware I’m using, how I did the alignment to the 25.5ºE geostationary orbital position where Es’hail 2 will be located, and how to have some fun scanning the direct broadcast satellites in the Ku band with a FUNCube Dongle Pro+.

Concurso Combinado V-UHF 2016

This weekend, being the first weekend in March, marks the start of the Spanish V-UHF contest season for this year. In previous years, I’ve been operating casually in some of these contests as a portable station. Sometimes I’ve worked on the countryside just outside my town, Tres Cantos, and on other occasions I’ve being enjoying the contest from a summit while doing a SOTA activation. My plan for this year is to participate in all (or almost all) of the contests and try to work from a summit as many times as I can. I pretend to work QRP (5 Watts) always and enter the 6-hour category, which allows working for a maximum of 6 consecutive hours.

Today, I’ve worked in the Concurso Combinado V-UHF. The weather forecast was too windy and cold to stay for several hours on a summit, so I decided to work from the countryside near town. I’ve worked this morning from 09:00UTC to 12:00UTC more or less. The equipment was, as usual, an FT-817ND and an Arrow satellite yagi antenna (3 elements on 144MHz and 7 elements on 432MHz). See below for a map of the stations worked. My position is marked in red, the stations worked in 144MHz only are marked in blue and the stations worked in both 144MHz and 432MHz are marked in green.

Building the OCXO/Si5351A kit from QRP Labs

Some posts ago, I spoke about the possibility of using the OCXO/Si5351A synth kit from QRP Labs as a low cost way of providing an external stable 27MHz reference to a satellite LNBF. I’ve received and built my kit some days ago, so here I will be looking at some aspects in the construction and performance of this kit.