BGM-1 Doppler during the lunar landing

On Sunday March 2, Firefly Aerospace’s Blue Ghost Mission 1 successfully landed on Mare Crisium, becoming the first NASA CLPS mission to perform a fully successful lunar landing. Congratulations to all the team at Firefly for this huge achievement.

Both AMSAT-DL and CAMRAS covered this event live, by receiving the S-band beacon from the lander with the 20 m antenna in Bochum Observatory and the 25 m Dwingeloo radiotelescope respectively, and streaming the waterfall of the signal in YouTube.

In this post I do a quick analysis of the Doppler of the signal received at Bochum and Dwingeloo. Part of the goal of this is to try to answer a question of Jonathan McDowell, who asked if it was possible to determine the exact second of the touchdown from this data. The answer is that this is probably not possible, since for a soft touchdown there is no significant acceleration at touchdown that can be identified in the Doppler curve.

The raw IQ data recorded by AMSAT-DL is not publicly available. The data recorded by CAMRAS can be found here.

Coding NEON kernels for the Cortex-A53

Some weeks ago, I presented at FOSDEM my work-in-progress high performance SDR runtime qsdr. I showed a hand-written NEON assembly implementation of a kernel that computes \(y[n] = ax[n] + b\), which I used as the basic math block for benchmarks on a Kria KV260 board (which has a quad-core ARM Cortex-A53 at 1.33 GHz). In that talk I glossed over the details of how I implemented this NEON kernel. There are enough tricks and considerations that I could make a full talk just out of explaining how to write this kernel. This will be the topic for this post.

Decoding HYDRA-T

HYDRA-T is a PocketQube developed and operated by the Spanish start-up Hydra Space. It was launched on SpaceX’s Transporter 12 mission on January 12, and according to this news article (in Spanish), it is very similar to HADES-R, another PocketQube also launched in Transporter 12 and developed by Hydra Space and operated by AMSAT-EA, the Spanish amateur satellite society. While HADES-R is an amateur satellite that carries a transponder for amateur radio communications, HYDRA-T is a commercial satellite which according to the news article carries a payload from the 6G-XTREME CON-SAT project from Universidad Carlos III de Madrid related to 6G deployment.

Some days ago, people in the LibreSpace forums started noticing that HYDRA-T was transmitting telemetry on 437.780 MHz, which is a frequency that belongs to the amateur satellite service 435 – 438 MHz band. This was acknowledged by Félix Páez EA4GQS, who is AMSAT-EA’s president and Hydra Space Software and Satellite Operations Manager. Félix expressed that HYDRA-T should not be transmitting in this frequency even if it has a license to do so.

I could delve more and give my opinion about whether HYDRA-T can rightfully transmit on this frequency, specially given the fact that it is doing so under the Earth Exploration Satellite Service (active) allocation (see the frequency allocation tables from ITU, and the ITU Space Explorer entry for this satellite, which for some reason is listed there as HYDRA-A), which is a whole different usage from a telemetry downlink of a communications satellite. Maybe I will do this another time. In this short post I wanted to focus on the analysis of the short telemetry recording shared by Jan van Gils PE0SAT, and show the similarities between HYDRA-T and HADES-R, as well as previous satellites from AMSAT-EA, for which documentation of their telemetry format is publicly available.

Decoding IEEE 802.11ah

Since some time, I’ve been thinking about doing something similar to my posts about LTE and 5G NR, but for WiFi (IEEE 802.11). In these posts, I take a signal recording and write a Jupyter notebook from scratch to analyze the signal and decode the data. I use these posts as a way of learning all the details of how these standards work, and I have seen that some people find them very useful.

Recently I was taking a look at a baby monitor camera system, composed by a camera and a monitor screen, since I was curious about how the camera transmits the video. Using Maia SDR, I located the signal at 866 MHz and realized that both the camera and the monitor screen were transmitting OFDM packets of approximately 2 MHz of bandwidth on this frequency. With some cyclostationary analysis, I found that the subcarrier spacing was 31.25 kHz (which works out to be 2 MHz / 64 FFT points), and that the cyclic prefix was 1/4 of the useful symbol duration. This pointed me straight to IEEE 802.11ah (WiFi HaLow), a variant of WiFi designed for the 800 MHz and 900 MHz license-exempt bands. After comparing the packet formats on the 802.11ah standard with the waterfall of my recording, I was sure that this was indeed 802.11ah. What started as a fun and short signal recording experiment has ended up going through the rabbit hole of implementing 802.11ah decoding from scratch in a Jupyter notebook. In this post I explain my implementation and the analysis of this recording.

Tianwen-1 second apoapsis raise

Some weeks ago I reported about an apoapsis raise manoeuvre done by Tianwen-1, the Chinese Mars orbiter. This has now happened again. Using state vectors from the telemetry decoded with the 20 m antenna in Bochum observatory by AMSAT-DL, we have detected an apoapsis raise manoeuvre done on 2025-01-08. This new apoapsis raise is much larger than the previous one. I have done the same kind of calculations as in the previous post, and also corrected a bug in my Keplerian elements plots (the periapsis and apoapsis passings were being paired incorrectly, which caused the SMA and eccentricity not to change in the plots I did in the previous post).

Tianwen-1 apoapsis raise

For a long time, AMSAT-DL has been using the 20 meter antenna in Bochum observatory to receive some telemetry from Tianwen-1, the Chinese Mars orbiter, almost daily. Since the telemetry includes the spacecraft’s state vectors, we can use this to monitor the spacecraft’s orbit. In 8 November 2021, Tianwen-1 entered its remote sensing orbit. This is an elliptical orbit with a period approximately 2/7 Mars sidereal days plus 170 seconds. This causes a ground track that is almost repeating, but drifts slowly to cover all the surface area of the planet.

I have been posting yearly updates about Tianwen-1’s orbit, the last of them this summer. In these updates, we can see that no manoeuvres have happened, and the changes in the Keplerian elements correspond to orbital perturbations caused by external forces. The orbit is in fact designed to cause the latitude of the periapsis to precess. In this way, all the surface of Mars can be scanned from low altitude.

Now we have some news. In the telemetry of the last few days we have detected that Tianwen-1 has raised its apoapsis radius from about 14134 km to 14489 km. All the data we have indicates that a propulsive burn has happened recently. In this post I give the details about this apoapsis raise manoeuvre.

5G NR PBCH

This post is a continuation of my series about the 5G NR RAN. In these posts, I’m analyzing a recording of the downlink of an srsRAN gNB in a Jupyter notebook written from scratch. In this post I will show how to decode the PBCH (physical broadcast channel). The PBCH contains the MIB (master information block). It is transmitted in the SSB (synchronization signals / PBCH block). After detecting and measuring the synchronization signals, a UE must decode the PBCH to obtain the MIB, which contains some parameters which are essential to decode other physical downlink channels, including the PDSCH (physical downlink shared channel), which transmits the SIBs (system information blocks).

In my first post in the series, I already demodulated the PBCH. Therefore, in this post I will continue from there and show how to decode the MIB from the PBCH symbols. First I will give a summary of the encoding process. Decoding involves undoing each of these steps. Then I will show in detail how the decoding procedure works.

Published
Categorised as Software Tagged ,

Hera telemetry

In my previous post I spoke about the recording I made of the X-band telemetry signal of Hera with the Allen Telescope Array shortly after it was launched. Despite the lack of publicly available accurate ephemerides at the time of launch, I managed to track the spacecraft by hand and decode a good amount of telemetry frames. In this post I will do an in-depth analysis of the telemetry.

Decoding Hera

Hera is an ESA mission to the Didymos binary asteroid system. It will arrive there in December 2026 to study the asteroids and the effects of the impact of DART on Dimorphos. It was launched on October 7 from Cape Canaveral, exactly one week before Europa Clipper. In the same way as for Europa Clipper, Hera’s launch trajectory allowed me to track it with the Allen Telescope Array, starting approximately 90 minutes after launch.

However, the ephemerides publicly available when the launch happened turned out to be completely wrong, as I will explain below in more detail. I needed to find the spacecraft’s signal by moving the antenna in the blind, and continue tracking it by hand by tweaking the pointing every few minutes. For this reason, the quality of the recordings I have done is not so good. The signal drops down frequently as the spacecraft moves away from where I was pointing or when I made mistakes in my pointing adjustments.

For this reason, I have prioritized decoding the Europa Clipper recordings, since I expected that decoding these low quality recordings of Hera would take more work. Nevertheless I have managed to decode a good amount of telemetry.

I have published the IQ recordings made with the ATA in the following two Zenodo datasets:

Europa Clipper telemetry

In my previous post I spoke about the recording I did of the Europa Clipper X-band telemetry shortly after launch with one of the Allen Telescope Array antennas. In that post I analysed the recording waterfall and the signal modulation and coding, and decoded the telemetry frames with GNU Radio. In this post I analyse the contents of the telemetry. As we will see, there are several similarities with the telemetry of Psyche. This makes sense, because both are NASA missions that have been launched only one year apart.