Now that DSLWP-B has already been for 17 days in lunar orbit, there have been several tests of the 70cm Amateur Radio payload, using 250bps GMSK with an r=1/2 turbo code. Several stations have received and decoded these transmissions successfully, ranging from the 25m radiotelescope at PI9CAM in Dwingeloo, the Netherlands (see recordings here) and the old 12m Inmarsat C-band dish in Shahe, Beijing, to much more modest stations such as DK3WN‘s, with a 15.4dBic 20-element crossed yagi in RHCP. The notices for future tests are published in Wei Mingchuan BG2BHC’s twitter account.
As far as I know, there have been no tests using JT4G yet. According to the documentation of WSJT-X 1.9.0, JT4G can be decoded down to -17dB SNR measured in 2.5kHz bandwidth. However, if we don’t insist on decoding the data, but only detecting the signal, much weaker signals can be detected. The algorithm presented here achieves reliable detections down to about -25dB SNR, or 9dB C/N0.
This possibility is very interesting, because it enables very modest stations to detect signals from DSLWP-B. In comparison, the r=1/2 turbo code can achieve decodes down to 1dB Eb/N0, or 25dB C/N0. In theory, this makes detection of JT4G signals 16dB easier than decoding the GMSK telemetry. Thus, very small stations should be able to detect JT4G signals from DSLWP-B.
The Vaisala RS41 radiosonde is a weather radiosonde that is currently being launched in Madrid Barajas and other sounding sites in Spain, Europe and Australia. I have already spoken about how to decode it. One of the most interesting aspects of this model is that the RS41 contains a STM32F1 ARM Cortex-M3 microcontroller, a SiLabs FSK transmitter, and a uBlox GPS receiver, whereas the older RS92 contained custom ASICs to perform these functions. Thus, it is easy to reflash this radiosonde and write custom firmware for it, giving a lot of possibilities for experimentation.
In STARcon 2018, Julián Santamaría from AEMET (the Spanish meteorological office) gave me an RS41. While I have some long-term ideas about how to use it as a propagation sounder, I have just started playing with it. In this brief note, I explain how to flash the radiosonde with custom firmware.
A week ago, Mike Rupprecht DK3WN told me that he had discovered JPEG images in the packets transmitted by 1KUNS-PF. I’ve had some time now to take a look at the information he sent me (including KISS dumps of the packets) and add an image decoder to gr-satellites.
JPEG images are not so difficult to spot amongst binary data, since they contain JFIF in ASCII in their header (4a 46 49 46 in hex). Another telltale sign of JPEG is the ff d8 ff that marks the start of the file. Presumably this is how Mike first noticed the images.
It seems that all the image packets are 138 bytes long. The first four bytes are the CSP header. Then we have 16bit big-endian field which counts the number of chunk, starting by 00. The last four bytes of the packet are most likely a checksum, and the remaining bytes are the corresponding chunk of the JPEG file.
I don’t know how to detect the end of one image other than by taking note of the beginning of the next image. In fact, this is the last packet of this image:
The ff d9 that occurs mid-packet is the end-of-file of the JPEG file. I don’t know what to make of the rest of the data following it. Since not all of it is zero, it doesn’t look as deliberate padding. It might be the case that the satellite is sending information left over in a buffer.
The image below is the whole JPEG file contained in the packets received by Mike. It was sent using 72 chunks, for a total of 9216 bytes (at 128 bytes per chunk) and its resolution is 640×480. Most of the other images sent by 1KUNS-PF are smaller.
A few days ago, I spoke about my tries to decode telemetry from 1KUNS-PF. Since then, Mike Rupprecht DK3WN has managed to get in contact with Lorenzo Frezza, from the satellite team in La Sapienza, who has given us very valuable and detailed information regarding the telemetry. This has allowed me to include a fully working decoder for 1KUNS-PF in gr-satellites. Many thanks to Lorenzo for his collaboration.
Just after reading Lorenzo’s description of the coding, where he mentions Golay and Reed Solomon, I noticed that 1KUNS-PF was using the NanoCom AX100 transceiver in ASM+Golay mode. This is the same mode that the Chinese TY-2 and TY-6 satellites use, and I’ve already spoken about ASM+Golay mode in a post about TY-2. The only difference between these Chinese satellites and 1KUNS-PF is that 1KUNS-PF is currently using 1k2 (but perhaps might change to 9k6 in the future), whereas the Chinese satellites use 9k6. With this in mind, it is very easy to adapt the decoder for TY-2 to obtain a decoder for 1KUNS-PF.
Regarding my previous tries, note that I had tried to identify the syncword as 11011001111010010101110001000011, whereas the correct syncword is 10010011000010110101000111011110. My syncword candidate was inverted (this might be a problem with sideband inversion in the recording by Mike that I used) and off by one bit (due to the difficulty of deciding where the preamble ends).
After reading Lorenzo’s email, it has been a very easy and fast task to add a fully working decoder to gr-satellites, while before I wasn’t optimistic at all about the difficulty of decoding this satellite. This makes me think about two things:
We should really check the usual suspects (i.e., popular modems) when trying to reverse-engineer some new satellite. I could have found this out by myself just by trying the AX100 ASM+Golay decoder.
Some advice IARU Satcoord: if a satellite uses some popular hardware (for instance the U482C or the AX100) or some popular standard (CCSDS), please list that in the frequency coordination sheet. Lorenzo’s email could have been well summarised in the sentence “1KUNS-PF uses a NanoCom AX100 in the ASM+Golay mode”, and then we would have been able to decode this satellite without any effort.
Lorenzo has also sent us the telemetry format, which is rather simple. Using that, I’ve been able to add a telemetry decoder also. The new decoder for 1KUNS-PF can be found as sat_1kuns_pf.grc in gr-satellites. I have also added a sample recording to satellite-recordings. The telemetry in one of the packets in the sample recording is as follows:
Irazú and UBAKUSAT both use standard 9k6 FSK packet radio (AX.25 with G3RUH scrambler), so they can be decoded with direwolf and many other packet radio decoders. However, no one has been able to decode 1KUNS-PF yet, due to the lack of information about the modulation and coding used. Mike Rupprecht DK3WN has some information about 1KUNS-PF, including a recording of some packets. I’ve taken a look at Mike’s recording and here are my findings.
Recently I have added a telemetry parser to the S-NET decoder in gr-satellites. Recall that I have talked about S-NET and its decoder in a previous post. To implement this telemetry parser I have used the information in Mike Rupprecht DK3WN’s web, some additional information shared by the S-NET team, as well as some recordings done by Mike. Many thanks to Mike and the S-NET team for all their help. Here I describe a few details about the telemetry.
A year ago, I made a decoder for the AO-40 FEC. While AO-40 has been dead for many years, the same FEC system is used in AO-73 and the rest of the FUNcube satellites. This decoder was later included in gr-satellites and it is currently used in the decoders for AO-73, UKube-1 and Nayif-1.
When I implemented this FEC decoder, for simplicity I used a hard decision Viterbi decoder, since my main concern was to get all the system working. I always intended to replace this by a soft decision Viterbi decoder, but it seems that I forgot completely about it.
Now, while thinking about integrating gr-aausat (my AAUSAT-4 decoder OOT module) into gr-satellites and adding a soft Viterbi decoder for AAUSAT-4, I have remembered about this. While the decoder for AAUSAT-4 will have to wait, since I have found a bug in the GNU Radio Viterbi decoder that makes it segfault, I have already added a soft Viterbi AO-40 FEC decoder to the FUNcube decoders in gr-satellites.
PolyITAN-2-SAU, or QB50 UA01, is a cubesat from National Technical University of Ukraine, that was launched on May 2017 as part of the QB50 proyect. When it was launched, I made a recording of several QB50 satellites, including PolyITAN-2-SAU. Presumably, the modulation and coding used by this satellite is 9k6 BPSK AX.25, with G3RUH scrambling. Back then, I commented that although the signal was strong and I could get a clean constellation plot, I was unable to get valid AX.25 packets.
The trick is that this satellite uses two “layers” of NRZI encoding. The relevant part of the decoder is shown below. The BPSK symbols come in from the left of the figure and the AX.25 packets exit by the right. A standard G3RUH AX.25 decoder wouldn’t have the extra NRZI decoder on the right.
PolyITAN-2-SAU decoder
Note that NRZI decoding and G3RUH descrambling commute, since the G3RUH polynomial has an odd number of terms. Therefore, the decoder can also be organized in a different way, with both NRZI decoders at one side (either the input or output) of the descrambler.
Having two NRZI decoders in chain is a really funny concept, so it almost seems as some kind of mistake from the satellite team (most QB50 satellites use standard BPSK or FSK AX.25 packet radio for compatibility). In fact, if we write an NRZI decoder as \(y_n = 1 + x_n + x_{n-1}\), where \(x_n\) is the input sequence, \(y_n\) is the output sequence and the operations are performed on the finite field \(GF(2)\), then the effect of two NRZI decoders in chain can be written as\[z_n = 1 + y_n + y_{n-1} = 1 + x_n + x_{n-2},\] which is a rather strange form of differential decoder.
Thanks to Andy for giving me the clue about the extra NRZI decoder, as I would have had a hard time in finding it by myself (although, in retrospective, it is not that difficult to guess it by looking at the descrambled stream and seeing how HDLC 0x7e flags can be obtained from it). I have now added a decoder for PolyITAN-2-SAU to gr-satellites.
In my previous post, I talked about the coding used by the S-NET cubesats and the implementation of my decoder included in gr-satellites. The decoder was still missing a BCH decoder. I have now implemented a BCH decoder and included it in gr-satellites. Here I describe the details of this decoder.
S-NET is a swarm of 4 cubesats from TU-Berlin. Their mission is to test SLink, an S-band transceiver for inter-satellite communications. They were launched on February 1 this year and they use use Amateur frequencies for their telemetry downlink on the 70cm band. Several weeks ago, Mike Rupprecht DK3WN raised my attention towards these satellites. Since they use a rather particular coding, custom software would be needed to decode the telemetry. Then, I set to add support for S-NET to gr-satellites
After some really helpful communication with the S-NET team, in particular with Walter Frese, and some exchanges of ideas with Andrei Kopanchuk UZ7HO, who was also working to add an S-NET decoder to his soundmodem, I have finally added a basic S-NET decoder to gr-satellites.