My current HF antenna is a long wire (around 15 or 20m) connected to an MFJ-993BRT outdoor automatic antenna tuner. The tuner is fed with around 25m of M&P Airborne 10 coaxial cable which runs into the shack. When I installed this antenna, I suffered from high RF currents on the outside of the coax shield when transmitting. These currents go into the shack trying to find a path to earth, since this kind of antenna needs good grounding. Also, while receiving, the coax carried lots of interference into the antenna, especially in the lower bands.
I tried to mitigate this problem by installing a ground rod besides the tuner. This is 2m a copper tube with 50cm buried in the ground. The top of the tube is connected to the tuner ground with a short cable. After installing the ground rod, approximately half of the RF current flowed into the ground rod and the remaining half kept flowing into the shack via the coax shield.
To measure RF current, I have been using a clamp on meter. My design is similar to the design by Ian GM3SEK, but I measure voltage across the output capacitor with a multimeter instead of using a resistor and ammeter coil.
Now I have built and installed a feedline choke following the design of the mid-bands choke by GM3SEK. I use 4 turns of M&P Airborne 5 coax through 3 Fair Rite 2643167851 material 43 cores, wound as an 85mm coil. The finished choke can be seen below.
I have measured the performance of the choke using my Hermes-Lite2 beta2 in VNA mode, as I already did with my mains choke. The results are shown below.
The performance seen in these graphs matches the performance measured by GM3SEK in his document. The choke has a resistance of over 1000 ohms on most of the Amateur HF bands, and up to 5000 ohms in the middle bands.
I have installed the choke directly on the input of the tuner. The RF current flowing on the outside of the coax shield has now decreased to around 2% in several cases and 10% in the worst case. The interference received in the lower bands has also decreased noticeably.