Receiving the Vaisala RS92-SGP radiosonde launched from Madrid-Barajas

Each day, at 01:00UTC and 11:00UTC a Vaisala RS92-SGP radiosonde is launched from Madrid-Barajas airport. This is a small electronics package tied to a helium balloon that ascends up to between 24 and 28km high before bursting and descending on parachute. It is designed to measure atmospheric parameters on its way up. It includes temperature, pressure and humidity sensors, as well as a GPS receiver. The launch on Wednesdays at 11:00UTC also includes a plug-in ozone sensor (which is a much larger and more expensive package). The data is transmitted at 403MHz using Manchester-encoded 4800bps GMSK and protected using Reed-Solomon. You can find more information about the RS92-SGP model in its technical datasheet and about the launches at Madrid-Barajas and other launches in Spain in the Spanish AIP Section 5.3 (other activities of a dangerous nature). Also, there is somebody who feeds the radiosonde data into the APRS network using SM2APRS, so you can track the launches by following OKER-11 on

Usually, the Sondemonitor software is used to receive and plot the parameters measured by the radiosonde and track the GPS data. Of course, this program is very nice and complete, but it is shareware, costs 25€ and runs only in Windows. I wanted to try if it is possible to track the GPS data in Linux using free software.

Continue reading “Receiving the Vaisala RS92-SGP radiosonde launched from Madrid-Barajas”

Trying to decode data from ÑuSat

Last Monday, a Chinese CZ-4B rocket launched the Chinese Earth observation satellite ZY-3 and the Argentinian satellites ÑuSat-1 and 2. These two satellites are the first of the Aleph-1 constellation of Earth observation satellites. ÑuSat-1 carries LUSEX, an Amateur payload which consists of a U/V linear transponder. Also, the two ÑuSat satellites transmit backup telemetry in the 70cm Amateur band, as one can see in the IARU frequency coordination application. In fact, the latest news is that ÑuSat-1 transmits telemetry on 436.445MHz and ÑuSat-2 uses 437.445MHz. According to the public announcements, the telemetry was supposed to be 9200 baud or 19200 baud. However, some people have noticed that, on the contrary, it is 40 kbaud. Although the modulation and coding specifications are not public, I’ve taken a look at an IQ recording of ÑuSat-2 by Mike DK3WN to see if I can decode anything. Here are my findings.

Continue reading “Trying to decode data from ÑuSat”

LilacSat-2 subaudio telemetry

Yesterday, the FM repeater on the Amateur satellite LilacSat-2 was active. I’ve talked about LilacSat-2 before, but so far I hadn’t made any recordings containing subaudio telemetry. While contacting several Spanish stations (EA5TT, EA1JM and EA1IW) throughout the pass, I made an IQ recording to analyse the telemetry later. Here I take a look at the telemetry format and the decoded data.

Continue reading “LilacSat-2 subaudio telemetry”

Decoding packets from GOMX-3: modulation and coding

Recently, Mike DK3WN pointed me to some decoder software for the satellite GOMX-3. This satellite is a 3U cubesat from GomSpace and transmits in the 70cm Amateur band. It has an ADS-B receiver on board, as well as an L-band SDR. As far as I know, no Amateur has decoded packets from this satellite previously, and Mike had some problems running the decoder software. I have taken a look at the software and tried my best to decode some packets from GOMX-3. So far, I have been able to do Reed-Solomon decoding and get CSP packets. However, I don’t have the precise details for the beacon format yet. Here, I describe all of my findings.

Continue reading “Decoding packets from GOMX-3: modulation and coding”

First signals from AAUSAT-4

Today I woke up early to receive the signals from AAUSAT-4 as it passed over Spain for the first time. This satellite was launched from Kourou yesterday at 21:02UTC into a Sun-synchronous orbit. The main payload for the launch was Sentinel-1B, a 5GHz Synthetic Aperture Radar satellite from the Copernicus project of the ESA. The remaining satellites that were launched by the Soyuz rocket were Microscope, from the French CNES, designed to test Einstein’s equivalence principle and the three cubesats in the Fly You Satellite! program: OUFTI-1, from the University of Liège, which carries a D-STAR amateur radio transponder, e-st@r-II, from the University of Torino, and AAUSAT-4, from the University of Aalborg, which carries an AIS receiver. Since the launch was into a polar orbit, the first pass of the Fly Your Satellite! cubesats over Spain was at 05:42UTC today.

Continue reading “First signals from AAUSAT-4”

Scanning Ku band satellites with the FUNCube Dongle

I’ve recently installed my satellite dish and modified LNBF in my garden. This equipment will be used to receive Es’hail 2, the first geostationary satellite carrying an amateur radio transponder. Here I’ll look at the hardware I’m using, how I did the alignment to the 25.5ºE geostationary orbital position where Es’hail 2 will be located, and how to have some fun scanning the direct broadcast satellites in the Ku band with a FUNCube Dongle Pro+.

Continue reading “Scanning Ku band satellites with the FUNCube Dongle”

Calibrating the S-meter in Linrad

In a previous post, I talked about the GALI-39 amplifier kit from Minikits. Here I will describe the procedure to calibrate the S-meter in Linrad (or another SDR) using this amplifier or any other amplifier with a known NF and an uncalibrated signal source. Leif Åsbrink has a youtube video where he speaks about the calibration of the S-meter in Linrad. However, he doesn’t use an amplifier, so I will be following a slightly different procedure.

Continue reading “Calibrating the S-meter in Linrad”

Using Linrad as a panadapter

Recently, I installed a G4HUP PAT on my FT-817ND. This is a small board which allows one to tap the IF of a conventional radio receiver to use an SDR as a panadapter (essentially, a waterfall display which shows a chunk of spectrum about the frequency tuned on the receiver). In the previous post I described the installation of the hardware. Here I will describe how I’ve set up Linrad to suit my preferences. One interesting aspect of this set up is that I’ve ended up adding a bit of code in Linrad to make it read the dial frequency of the radio using CAT and make Linrad track the frequency as one tunes around in the radio.

Continue reading “Using Linrad as a panadapter”

Installing the G4HUP PAT on the FT-817

Today I’ve been installing the G4HUP PAT kit on my FT-817ND transceiver. This kit is essentially a buffer amplifier that allows one to tap the IF of a transceiver, in order to send it to an SDR. Then, the SDR can be used as a panadapter. This kit is intended as an entry level SMD project and it can be fitted to many popular amateur radio transceivers. In fact, this has been my first SMD project, and I have found it quite easy to solder using the right tools and technique.

Continue reading “Installing the G4HUP PAT on the FT-817”