Some fellow Spanish Amateur Operators were talking about the use of the Opera mode as a weak signal mode for the VHF and higher bands. I have little experience with this mode, but I asked them what is the advantage of this mode and how it compares in sensitivity with the JT modes available in WSJT-X. I haven’t found many serious tests of what is the sensitivity of Opera over AWGN, so I’ve done some tests using GNU Radio to generate signals with a known SNR. Here I’ll talk about how to use GNU Radio for this purpose and the results I’ve obtained with Opera. Probably the most interesting part of the post is how to use GNU Radio, because it turns out that Opera is much less sensitive than comparable JT modes.
Tag: noise
Calibrating the S-meter in Linrad
In a previous post, I talked about the GALI-39 amplifier kit from Minikits. Here I will describe the procedure to calibrate the S-meter in Linrad (or another SDR) using this amplifier or any other amplifier with a known NF and an uncalibrated signal source. Leif Åsbrink has a youtube video where he speaks about the calibration of the S-meter in Linrad. However, he doesn’t use an amplifier, so I will be following a slightly different procedure.
Estimation of the contribution of the frontend to the total noise figure
In a radio receiver composed of two stages, the total noise factor \(F\) can be computed using Friis’s formula as\[F = F_1 + \frac{F_2 – 1}{G_1},\]where \(F_1\) is the noise factor of the first block, \(G_1\) is the gain of the first stage and \(F_2\) is the noise factor of the second stage. If \(G_1\) is large enough, then the contribution of the second factor is small and the total noise factor of the whole system is essentially the same as the noise factor of the first stage. This is the reason why a low noise amplifier is useful as a frontend, because it has a low noise factor \(F_1\) and high gain \(G_1\).
If \(F_2\) and \(G_1\) are known (perhaps only approximately), then it is easy to check if the contribution of the frontend to the total noise figure is large enough so that the total noise figure is determined by the noise figure such frontend alone. However, it may happen that one or both of \(F_2\) and \(G_1\) are not known. In email communication, Leif Åsbrink mentioned that there is an easy way of checking the contribution of the frontend without knowing these parameters. The method is to switch off the frontend and note the drop in the noise floor. He gave the following estimates: if the noise floor drops by more than 10dB, then the total noise figure is the same as the noise figure of the frontend up to 1dB; if the noise floor drops by more than 17dB, then the total noise figure is the same as the noise figure of the frontend up to 0.1dB. Here I present the maths behind these kind of estimates.