Looking at BY70-1 image downlink

BY70-1 is a Chinese Amateur satellite that will launch on Monday 26 December. It has a V/U FM repeater, a camera and a 9k6 BPSK downlink on 70cm that transmits telemetry and the JPEG images taken by the camera. The BPSK downlink uses the same modulation and coding as LilacSat-2, of which I have spoken several times. Recently, Wei MingChuan BG2BHC has added support for the image downlink of BY70-1 to gr-lilacsat and a bit stream recording to test the image receiver.

Unfortunately, the image decoder is closed-source, as it contains some certification methods used to avoid fake packets over the internet. However, Wei gave me a brief description of how the image downlink protocol works. After seeing the closed-source decoder running, I had enough to figure out how the protocol works. I have implemented an open-source image decoder as a python GNU Radio block. It is in my gr-lilacsat fork, and it will soon be included in the upstream gr-lilacsat repository. Here I look at the protocol used for the image downlink.

Continue reading "Looking at BY70-1 image downlink"

LilacSat-1 Codec 2 downlink

LilacSat-1 is one of the satellites that will form part of the QB50 constellation, a network of 50 cubesats built by different universities around the world that will conduct studies of the thermosphere. LilacSat-1 is Harbin Institute of Technology's satellite in the QB50 constellation, and is expected to launch late this year. Incidentally, his "brother" LilacSat-2 launched in September 2015, and it has become a popular satellite beacause of its Amateur Radio FM repeater.

Apparently, LilacSat-1 will feature a very novel transponder configuration: FM uplink and Codec2 digital voice downlink. I have discovered this yesterday while browsing the last updates to the Harbin Institute of Technology gr-lilacsat github repository. In fact, there is no mention of digital voice in the IARU coordination page for LilacSat-1. According to the coordination, the transponder will be mode V/U (uplink in the 144MHz band and downlink in the 435MHz band). However, it seems that only downlink frequencies have been coordinated with IARU. Hopefully the uplink frequency will lie in the satellite subband this time. LilacSat-2 is infamous because of its uplink at 144.350MHz, which lies in the SSB subband in the Region 1.

Codec2 is the open source digital voice codec that is used in FreeDV. This makes LilacSat-1 very exciting, because Codec2 is the only codec for digital voice radio that is not riddled with patents. Moreover, it performs much better than its main competitor: the AMBE/IMBE family of codecs, which are used in D-STAR, DMR and Yaesu System Fusion. Codec2 can achieve the same voice quality as AMBE using roughly half the bitrate.

Harbin Institute of Technology has recently published a GNUradio decoder for the Codec2 downlink and an IQ recording to test the decoder. Here I take a quick look at this code and I talk a bit about the possibilities of using Codec2/FreeDV in satellites.

Continue reading "LilacSat-1 Codec 2 downlink"

LilacSat-2 downlink signal strength

In a previous post, I recorded and decoded LilacSat-2 telemetry. This satellite transmits telemetry on 437.200MHz and 437.225MHz using two different radios and antennas, as can be seen in the radio info page. The transmission on 437.200MHz is usually 9k6 BPSK telemetry, but this is the same frequency, radio and antenna that is used for the amateur FM transponder when it is active. Looking at the waterfall as I recorded the IQ, I had the impression that the signal on 437.200MHz was much weaker than the signal on 437.225MHz. Using my LilacSat-2 receiver and the IQ recording I did, I have plotted the signal strength on both frequencies to compare.

Continue reading "LilacSat-2 downlink signal strength"

LilacSat-2 GNUradio receiver

I have made my own LilacSat-2 telemetry GNUradio receiver using the flowgraphs included in gr-lilacsat. The new features of this receiver are the following:

  • All the decoders and the frontend are run on the same flowgraph. I find this more practical than having to run all the flowgraphs separately. Also, some blocks can be reused in this way.
  • It uses gr-gpredict-doppler to compensate for Doppler. As I mentioned in a previous post, I prefer this to the Doppler correcting system included in gr-lilacsat.
  • It plots and outputs to a file the signal strength on 437.200MHz and 437.225MHz. This can be used for later analysis.
  • It supports recording file input, or live SDR using an ALSA source (for the FUNCube Dongle Pro+, for instance). Another SDR supported by GNUradio can be easily used.
  • It supports recording both the raw IQ data and the Doppler corrected IQ data. The raw IQ file can be then played back by simultaneously running Gpredict with the correct settings for the recorded pass. The Doppler corrected IQ file can be played back without running Gpredict.

This receiver can be downloaded from GitHub. The flowgraph is a bit crammed, but that's what you get for having all the decoders in the same flowgraph. Several of the input/output blocks are disabled, so that you can choose which ones to use.

LilacSat-2 telemetry PDU decoder

Recently, I showed my experiences receiving and decoding LilacSat-2 telemetry. I managed to get 15 packets of 4k8 GFSK telemetry and 15 packets of 9k6 BPSK telemetry during a single pass. However, I couldn't decode these packets because I didn't know the telemetry format. It turns out that Mike DK3WN has released a decoder software. Here I show Mike's software decoding the packets I received.

Continue reading "LilacSat-2 telemetry PDU decoder"

Decoding LilacSat-2 telemetry

After having my first QSO through the Harbin Institute of Technology amateur radio satellite LilacSat-2, I decided to give a serious try to the telemetry decoding software. This is available as a GNURadio module. A Linux distribution with all the proper software installed and configured is provided, for an easy use. However, I have used GNURadio in the past, so I wanted to try to setup the GNURadio module directly on my machine.

The web page for LilacSat-2 gives also a description of the different telemetry formats. The satellite has an SDR radio transmitting on 437.200MHz. This radio is used for the FM amateur radio transponder and also to transmit several different telemetry formats. The satellite also transmits telemetry on 437.225MHz, presumably using a different (non-SDR) radio and a different antenna, so that the satellite can keep transmitting telemetry even if the SDR system fails. Typically, when the FM transponder is disabled, the satellite will transmit 9k6 BPSK telemetry on 437.200MHz and 4k8 GFSK telemetry on 437.225MHz. These can be seen in the picture above, which was made using my RF recording and baudline. The packet on the upper right is 4k8 GFSK and the packet on the lower left is 9k6 BPSK. Notice the slight slant due to Doppler.

Continue reading "Decoding LilacSat-2 telemetry"