A tour of QB50

The QB50 project consists in a constellation of cubesats with the goal of studying the thermosphere. The cubesats are built by different universities around the world and each of them carries one of three different scientific instruments. A total of 36 cubesats have been built for the QB50 project. All of them transmit on the 70cm Amateur satellite band. A total of 28 were launched to the ISS on April 18th on the Cygnus CRS-7 resupply ship. Over the last two weeks, they have been released from the ISS. The complete launch schedule and radio information can be found here (note that the launches on May 23rd were delayed due to an unforeseen EVA). Several other non-QB50 cubesats, some of them transmitting in the Amateur bands, have also been released together with the QB50 satellites. This is probably the time that more Amateur satellite have been released at the same time. The satellites have not separated much yet, giving a great opportunity to record a single pass and analyse the telemetry of all the satellites.

A few days after the release of all the 28 QB50 cubesats, on May 29th at 18:25:29 UTC, I made an SDR recording of the complete pass of all the cubesats. The recording spans the 3MHz of the 70cm Amateur satellite band (435-438MHz) and lasts 23 minutes and 08 seconds. It was made from locator IN80do using a 7 element handheld yagi (the Arrow satellite yagi) held in the vertical polarization and a LimeSDR. The gain of the LimeSDR was set to maximum, but no external LNA was used. Here I look at the recording, list the satellites heard, and decode their telemetry.

A bunch of data from AAUSAT-4

Recently, I have published a Gnuradio AAUSAT-4 decoder in Github. It is based on software from the university team, but several parts have been rewritten completely.

The current features of this decoder are as follows:

  • FEC decoding of both long frames and short frames using the code from bbctl (this code is included in the Gnuradio decoder)
  • CSP header parsing according to the specifications in Wikipedia
  • Parsing of the COM and EPS fields in telemetry beacons, using the code from the university team

In the future, I would like to be able to parse more data from the satellite, but I don’t have the format specifications. I’m trying to get the university team to send me some information.

First signals from AAUSAT-4

Today I woke up early to receive the signals from AAUSAT-4 as it passed over Spain for the first time. This satellite was launched from Kourou yesterday at 21:02UTC into a Sun-synchronous orbit. The main payload for the launch was Sentinel-1B, a 5GHz Synthetic Aperture Radar satellite from the Copernicus project of the ESA. The remaining satellites that were launched by the Soyuz rocket were Microscope, from the French CNES, designed to test Einstein’s equivalence principle and the three cubesats in the Fly You Satellite! program: OUFTI-1, from the University of Liège, which carries a D-STAR amateur radio transponder, e-st@r-II, from the University of Torino, and AAUSAT-4, from the University of Aalborg, which carries an AIS receiver. Since the launch was into a polar orbit, the first pass of the Fly Your Satellite! cubesats over Spain was at 05:42UTC today.