Hera telemetry

In my previous post I spoke about the recording I made of the X-band telemetry signal of Hera with the Allen Telescope Array shortly after it was launched. Despite the lack of publicly available accurate ephemerides at the time of launch, I managed to track the spacecraft by hand and decode a good amount of telemetry frames. In this post I will do an in-depth analysis of the telemetry.

Decoding Hera

Hera is an ESA mission to the Didymos binary asteroid system. It will arrive there in December 2026 to study the asteroids and the effects of the impact of DART on Dimorphos. It was launched on October 7 from Cape Canaveral, exactly one week before Europa Clipper. In the same way as for Europa Clipper, Hera’s launch trajectory allowed me to track it with the Allen Telescope Array, starting approximately 90 minutes after launch.

However, the ephemerides publicly available when the launch happened turned out to be completely wrong, as I will explain below in more detail. I needed to find the spacecraft’s signal by moving the antenna in the blind, and continue tracking it by hand by tweaking the pointing every few minutes. For this reason, the quality of the recordings I have done is not so good. The signal drops down frequently as the spacecraft moves away from where I was pointing or when I made mistakes in my pointing adjustments.

For this reason, I have prioritized decoding the Europa Clipper recordings, since I expected that decoding these low quality recordings of Hera would take more work. Nevertheless I have managed to decode a good amount of telemetry.

I have published the IQ recordings made with the ATA in the following two Zenodo datasets: