
Presente y futuro de las microondas de radioaficionados

Daniel Estévez EA4GPZ

8 marzo 2025 Micromeet 2025, Guadarrama

FIGURE 10

Specific attenuation due to atmospheric gases (Pressure = 1 013.25 hPa; Temperature = 15°C; Water Vapour Density = 7.5 g/m³)

Actividades actuales en microondas de radioaficionados

Bandas de aficionados:

- QSOs terrestres
 - Balizas
 - ATV
- EME
- QO-100
- HAMNET y otras redes

Actividades actuales en microondas de radioaficionados

Bandas de aficionados:

- QSOs terrestres
 - Balizas
 - ATV
- EME
- QO-100
- HAMNET y otras redes

Otras bandas:

- ADS-B
- Tracking satélites comerciales (e.j. meteorológicos)
- DSN amateur
- Radioastronomía amateur
- Comunicaciones ópticas
- Experimentos en THz

Tendencias en industria

- Bandas mmWave (∼ 24 300 GHz)
 - 5G FR2 (24.25 71 GHz)
 - Banda V (60 GHz) sin licencia (WiFi mmWave)
 - Bandas K (25.5 27 GHz) y Ka (31.8 32.3 GHz) en exploración espacial
 - Radares automóviles (24 24.5 GHz, 76 81 Ghz)
- Mayor integración (circuitos integrados que realizan todas las funciones RF)
- Mayor ancho de banda: ADCs/DACs Gsps

Tendencias en industria

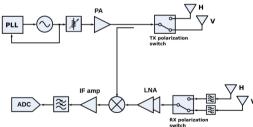
- Bandas mmWave (∼ 24 300 GHz)
 - 5G FR2 (24.25 71 GHz)
 - Banda V (60 GHz) sin licencia (WiFi mmWave)
 - Bandas K (25.5 27 GHz) y Ka (31.8 32.3 GHz) en exploración espacial
 - Radares automóviles (24 24.5 GHz, 76 81 Ghz)
- Mayor integración (circuitos integrados que realizan todas las funciones RF)
- Mayor ancho de banda: ADCs/DACs Gsps

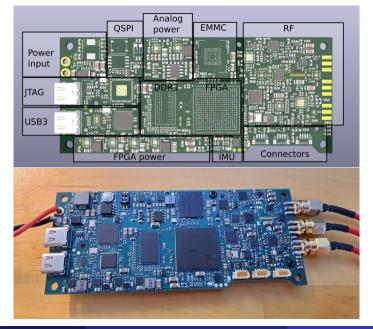
Consecuencias:

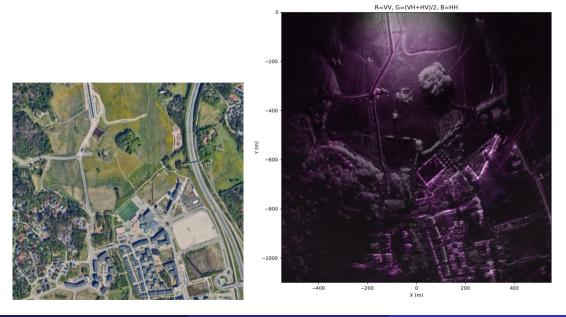
- Circuitos integrados de bajo coste para aplicaciones de consumo:
 - Propósito específico ⇒ frecuencias incorrectas
 - Flexibles ⇒ romper barrera 6 GHz
- Uso de bandas no licencias por radioaficionados. Ejemplos:
 - Links HAMNET en 60 GHz
 - LoBa en 868 MHz

Algunas actividades interesantes que podrían popularizarse

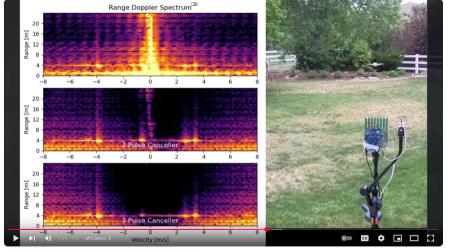
- Propósito: dar ideas de qué más cosas pueden hacerse además de las actividades tradicionales
- Lista incompleta y subjetiva
- Algunas ideas requieren software complejo. Gracias al open source, esto puede ser más fácil en el futuro.
 - Ejemplo: DVB-S2 en QO-100


Radar


Henrik Forstén. Radar de apertura sintética en 6 GHz para dron por Henrik Forstén


https://hforsten.com/

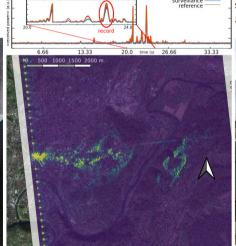
homemade-polarimetric-synthetic-aperture-radar-drone.html



Jon Kraft. Radar en 10 GHz para detectar drones

https://www.youtube.com/@jonkraft

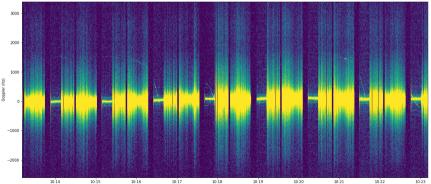
Drone Tracking Radar: Part 7 Longer Range and MTI Processing



J.M. Friedt. Varios proyectos http://jmfriedt.free.fr/

Passive bi-static measurement using Sentinel1 spaceborne RADAR as

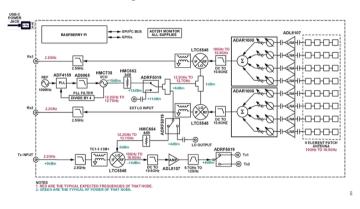
non-cooperative source
reference
antenna
surveillance
antenna



- 0.5-second usable record (30 MS/s×2 channels)
- Understanding level0 allows splitting datastream according to Pulse Repetition Interval
- Range compression by correlation of reference and surveillance channels
- Range axis determined by illumination geometry: $dr = c \times dt/(1 + cos\vartheta)$
- Azimuth compression by inverse Fourier transform

See A. Anghel & al., Bistatic SAR imaging with Sentinel-1 operating in TOPSAR mode, 2017 IEEE Radar Conference 10/16

Baliza 2.3 GHz Andrés EB4FJV. Reflexiones en aviones.


Arrays de antenas

Univ. Stuttgart. ESPARGOS: array de ESP32. https://espargos.net/

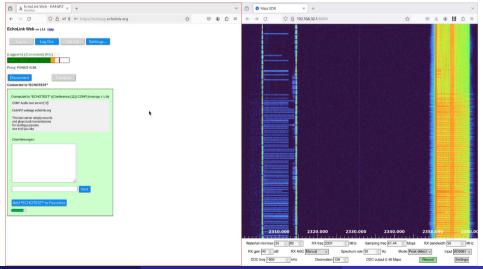
ADALM-PHASER. https://www.analog.com/en/resources/reference-designs/circuits-from-the-lab/cn0566.html

Nuevas tecnologías de comunicaciones

Interés en LTE y 5G por parte de HAMNET (Jann DG8NGN en FOSDEM25):

HAMNET – Future Evolvement?

Improving the HAMNET Backbone:

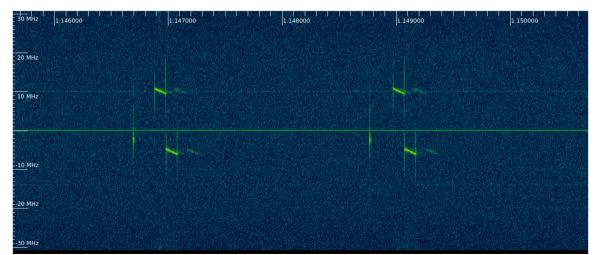

10 GHz

- Plenty of spectrum (500 MHz) available (we run 2 links on 10 GHz)
- Expensive gear available (2k€++, one end!)
- Transverters for Standard Wifi Gear to make it affordable?
- Spectrum: "Use it or loose it"?

Other stuff to explore:

- THz Laser-Links? Laser = Speed; Fallback = existing 5 GHz infrastructure
- Playing with LTE B40 (TDD) on 13cm: Looking for Ericsson B40T gear...
- Playing with 5G SA n40 (TDD): https://docs.srsran.com/projects/project/en/la test/tutorials/source/cotsUE/source/index.html
- Playing with OpenWifi on 70cm/23cm: https://github.com/open-sdr/openwifi

LTE y 5G son muy complejos, pero hay software open source (https://www.srslte.com/). Ejemplo práctico (a modo de broma). Hotspot Echolink en 2.3 GHz (banda B30).



Recepción de señales de otros servicios

- Antecendentes:
 - SWL
 - Wardriving
 - Recepción de balizas de radioaficionados
- Explorar el espectro electromagnético

Radares

Radar 1.31 GHz Madrid Barajas

https://www.transportes.gob.es/organos-colegiados/ciaiac/ publicaciones/informes-relevantes

A-042/1983. Informe Técnico del Accidente Sufrido por la Aeronave Boeing 747-283B, Matrícula HK-2910, a 12 KM. del Aeropuerto de Madrid-Barajas el día 27 de Noviembre de 1983.

Sección 1.8 Ayudas a la navegación.

Emplazamiento SELENIA
Radar Primario ATCR 44
Frecuencia TX Canal A: 13300 MHz. Canal B: 1280 MHz
Potencia de Pico 500 KW.
Alcance 80 N.M.

ARCHITECTURE

· Fully solid state and fail-soft modular transmitter with separate Power Supply and Driver amplifier for each Power

- · Redundant receiver channels
- · Duplicated Radar Processor with digital A-MTD Signal
- · Extractor/Controller for Target and Weather detection
- · Data Transmission on redundant LAN

TECHNICAL FEATURES

 Frequency band · Instrumented Range

Detection Logic

From 1250 to 1350 MHz From 100 NM up to 256 NM From 5 to 75 RPM

16 µs / 150 µs for En-Route 1.2 µs / 100 µs for Extended TMA

· Antenna rotation rate · Transmitter Architecture Solid State (with fail soft canability) including 16 power chains and radial power

combiner · Output Power > 30 KW Transmitted Waveforms Short/Long pulses

· Compressed Pulse length 1.2 us · Frequency Management Burst-to-burst frequency diversity with capability of on-line frequency selection

· Cooling Adaptive Moving Target Detector (A-MTD) with · Signal Processor 4 to 10 confugurable FIR filters, according to

radar timing · Conversion Type A/D conversion at IF (30 MHz) level · Processor Platform

COTS architecture based on DSP processors and standard interfaces C language algorithms running on LINUX OS

Extended extraction processing capability (>1600 plots)

Automatic selection of fixed and adaptive

Radar de automóvil. Ejemplo:

T = 5 L = Model X Owner's Manual

RF Modules

Description	Frequency Band	Power Level	Antenna Location
Security Controller	2400 – 2483.5 MHz	10 mW	PCB Antenna, in A Pillar
Fascia Endpoint	6000 – 8500 MHz	10 mW	Chip Antenna, behind front and rear fascia
Fascia Endpoint	2400 – 2483.5 MHz	10 mW	PCB Antenna, behind front and rear fascia
B-Pillar Endpoint	6000 - 8500 MHz	10 mW	Chip Antenna, behind the B-pillar glass
B-Pillar Endpoint	2400 – 2483.5 MHz	10 mW	PCB Antenna, behind the B-pillar glass
B-Pillar Endpoint	13.56 MHz	n/a(magnetic field)	PCB Antenna, behind the B-pillar glass
Radar	76000-77000 MHz	4 W	Behind front fascia
Key Fob	2400 – 2483.5 MHz	10 mW	Built in the key PCB
Key Fob	6000 – 8500 MHz	10 mW	Built in the key PCB
Wireless Charger	13.56 MHz 127.72 kHz	n/a (magnetic field)	PCB Antenna, in center console
Wireless Charger	2400 – 2483.5 MHz	10 mW	PCB Antenna, in center console
In cabin radar	60000 - 64000 MHz	20 mW	PCB Antenna, close to rear view mirror

RACON

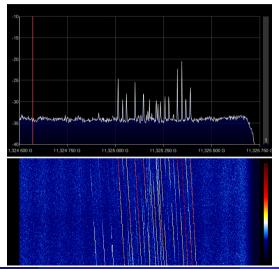
HEKLEO-2SXR está equipado con un sistema de autodiagnóstico que permanentemente escanea el sistema.

APLICACIONES

- Faros y balizas de elevada importancia para la navegación costera
- · Boyas de recalada
- Boyas o balizas críticas en la entrada de puertos
- Estructuras marítimas en alta mar

Cuerpo	Polietileno con inhibidor UV, con dimensiones de 28 cm, altura 74 cm máximo
Peso	8,2 kg
ANTENAS	
	Horizontal y vertical en banda S
Polarización	Horizontal en banda X
Diagrama horizontal (pan)	+/- 2 dB en X y S sobre 360º
Diagrama vertical	+/- 3 dB en X y S sobre 159

CONSTRUCCIÓN


AMBIENTE &	CALIDAD
Certificados	ISO 9001:2015, ISO 14001:2015, Miembro Industrial IALA
Tomporatura	Operación: -40% hasta +70%

PRESTACIONES	:	
Frecuencia	Banda X (9300-9500 MHz)	
Frecuencia	Banda S (2900-3100 MHz)	
Ciclo de trabajo	Programable de 0 a 60 segundos	
Entradas	Inhibidor radares locales	
Salidas	Fallo banda X, fallo banda S, fallo alimentación	
Configuración	Puerto RS 232	
Ancho pulso detectado	50 a 2000 ns	
Sensibilidad recibida	-50 dBm	
Retraso respuesta	<700 ns	
Energía emitida	X Band 1W	
Energia emitida	S Band 1W	
Tensión nominal	12V/24V	
Voltaje	9-36V	

Satélites Starlink en 11 GHz

https://sgcderek.github.io/blog/starlink-beacons.html

Radios de microondas en aviones

- DME 960 1215 MHz
- Radar secundario y ADS-B. 1030 y 1090 MHz
- Altímetro radar 4.2 4.4 GHz
- Radar meteorológico 9.3 9.5 GHz y 15.5 15.7 GHz
- Inmarsat 1.5 GHz e Iridium 1.6 GHz
- Internet en banda Ka (e.j. Viasat) 17.7-21.2 GHz y 27.5 30 GHz

Recepción de DME en 1144 y 1207 MHz

Delay between groundstation and aircraft pulses (coloured by aircraft pulse power) 75 (sr/) 70 Delay (60 50 13 08:25 13 08:30 13 08:35 13 08:40

Balizas: estudios de propagación

- Estudiar los efectos de la meteorología en la propagación
- Medida de:
 - Potencia (fácil)
 - Retardo de propagación (requiere sincronización o transponder)
- Proyecto de compartición de datos online (nube, IoT, big data)
- Ejemplo software visualización/monitorización: Grafana
- Antecedentes:
 - pskreporter.info, RBN, etc
 - RSGB 2022 Convention Sprinkles or Mirrors. Chris Deacon G4IFX (esporádica-E en 6 m) https://www.youtube.com/watch?v=jj7mknSPNV8