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Asking the big questions

@ Which is the one true best SDR runtime?
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Asking the big questions

@ Which is the one true best SDR runtime?
@ What makes an SDR runtime be fast?
@ Look at GNU Radio 3.10, GNU Radio 4.0, and FutureSDR
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All the SDR runtimes look the same!

Noise Source
Noise Type: Gaussian
Amplitude: 1

Seed: 0

Multiply Const
Constant: 42

Null Sink
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All the SDR runtimes look the same!

Noise Source
Noise Type: Gaussian
Amplitude: 1

Seed: 0

Multiply Const
Constant: 42

Null Sink

@ Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)
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All the SDR runtimes look the same!

Noise Source
Noise Type: Gaussian
Amplitude: 1

Seed: 0

Multiply Const
Constant: 42

Null Sink

@ Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)

@ Different input and output buffers. Bad for cache.
@ High (and difficult to control) latency on TX flowgraphs
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An alternative: closed circuits of “packets”

@ Samples are sent in “packets” rather than as a continuous stream

@ The flowgraph is divided into closed circuits, in which a fixed number of “packets”
always exist

@ “Packets” are recycled by sending them from a sink back to a source

Noise Source
Noise Type: Gaussian

Amplitude: 1
Seed: 0

Multiply Const
Constant: 42

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 5/26



An alternative: closed circuits of “packets”

@ Samples are sent in “packets” rather than as a continuous stream

@ The flowgraph is divided into closed circuits, in which a fixed number of “packets”
always exist

@ “Packets” are recycled by sending them from a sink back to a source

Noise Source
Noise Type: Gaussian

Amplitude: 1
Seed: 0

@ Many blocks can work in-place on a “packet”

Latency is determined by the number of “packets” in a circuit

@ “Packets” can mark natural sections in the data (aligned to RF frame sections, etc.).
Potentially less need for tags.

@ More similar to a hand-crafted implementation where functions are called in
sequence on the same buffer

Multiply Const
Constant: 42
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The idea of a quantum

@ Let’s call this “packet” a quantum, because it is cool and because packet and frame
are heavily overloaded
@ A quantum contains:

o A buffer with flexible margins. The margins allow inserting/adding a prefix/suffix in-place.
Example use cases: CRC, synchronization word, cyclic prefix.

o Tags, referred to sample indices within the packet

o Perhaps other metadata that the user might need?
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A more complex example flowgraph
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AGC
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@ https://github.com/daniestevez/gsdr

@ An implementation of these ideas in Rust using async

@ Some benchmarks comparing with GNU Radio 3.10, GNU Radio 4.0 and FutureSDR
@ Still an experimental work-in-progress
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https://github.com/daniestevez/qsdr

Schedulers in gsdr

@ GNU Radio 4.0 and FutureSDR support custom schedulers, but they are quite
specific and not easy to write

@ gsdr schedulers are based on Rust streams, so any code that can run streams can
be a gsdr scheduler
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@ A stream is an object that can produce a sequence of values asynchronously

let mut stream = stream::iter(1l..=3);
assert_eq! (stream.next().await, Some(1l));
assert_eq!(stream.next().await, Some(2));

assert_eq!(stream.next().await, Some(3));

assert_eq!(stream.next() .await, None);
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@ A stream is an object that can produce a sequence of values asynchronously

let mut stream = stream::iter(1..=3);

t_eqg!(stream.next() .await, Some(1l));
“t_eqg!(stream.next() .await, Some(2));
t_eqg!(stream.next() .await, Some(3));

rt_eq!(stream.next() .await, None);

@ A gsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done Or an error

@ A gsdr block is converted to a stream. Each next () call on this stream calls the
work function once, and returns either an error or nothing.
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@ A stream is an object that can produce a sequence of values asynchronously

let mut stream = stream::iter(1..=3);

t_eqg!(stream.next() .await, Some(1l));
t_eq! (stream.next().await, Some(2));
t_eq! (stream.next().await, Some(3));

rt_eq!(stream.next() .await, None);

@ A gsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done Or an error

@ A gsdr block is converted to a stream. Each next () call on this stream calls the
work function once, and returns either an error or nothing.

@ A gsdr scheduler is just some code that performs calls to multiple streams on one or
several threads until all of them are done or there is an error
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@ Stream combinators are useful to build schedulers. For instance, sequence?2 ()
takes 2 streams (which produce items of type Result< (), E>)and produces a
stream (with the same item type) that calls each of the 2 streams in sequence

@ The helper function run () takes a stream and produces a future (an async result)

that calls the stream until it is done or there is an error. This is usually the top-level
element of the scheduler on each thread
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type B = CacheAlignedBuffer<f32>;
let buffer_size = 4096;
let num_buffers = 4;

let head_elements = 100_080_000;

let buffers = std::iter::repeat _with(|| Quantum::new(B::new(buffer_size))).take(num_buffers);

let mut fg = Flowgraph::new();

let source = fg.add_block(NullSource::<Quantum<B>>::new());
let head = fg.add_block(Head::<Quantum<B>, Spsc, SpscRef>::new(head_elements));
let sink = fg.add_block(NullSink::<Quantum<B>>::new());

let mut circ = fg.new_circuit(buffers);
fg.connect(&mut circ, source.output(), head.input())?;
fg.connect_with_return(&mut circ, head.output(), sink.input(), source.input())?;

let mut fg = fg.validate()?;

let source = fg.extract_block(source)?;
let head = fg.extract_block(head)?;
let sink = fg.extract_block(sink)?;

println!("running flowgraph...");
block_on(run(sequence3(
source.into_stream(),
head.into_stream(),
sink.into_stream(),
M2
println!("flowgraph finished");
FOSDEM 2025 13/26
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#[derive(Block, Debug)]

#[qsdr_crate = "crate"]

#[work (WorkInPlace)]

pub struct Head<T, Cin = Spsc, Cout = Spsc>

impl<T, C€in, Cout> WorkInPlace<T> for Head<T, Cin, Cout>
where

Cin: Channel,

Cin::Receiver<T>: Receiver<T>,

where Cout: Channel,

Cin: Channel,

. . . {
Cin::Recelver<T>: Recelver<T>, async fn work_in_place(&mut self, _: &mut T) -> Result<WorkStatus> {
Cout: Channel, .
assert!(self.remaining > 0);
e M . self.remaining -= 1;
or .
lp 1 . if self.remaining == @ {
input: PortIn<T, Cin>,
M . Ok(DoneWithOutput)
or
tp ! } else {
output: PoOrtoOut<T, Cout>,
o Ok(Run)
remaining: u64, }
}
}
}

impl<T, C€in, Cout> Head<T, Cin, Cout>
where
cin: channel,
Cin::Recelver<T>: Recelver<T>,
Cout: Channel,

{
pub fn new(count: u64) -> self {
self {
input: Default::default(),
output: Default::default(),
remaining: count,
3
}
}
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Benchmarking methodology

@ Choose a family of simple flowgraphs

@ Write by hand an implementation that performs as best as possible

@ Write implementations in gsdr, GNU Radio 3.10, GNU Radio 4.0 and FutureSDR
@ Measure the rate (samples/second) at which each implementation can run

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 15/26



Benchmarking platform

@ Quad-core Cortex-A53 in AMD (Xilinx) MPSoC (1.33 GHz clock)

@ Found in many AMD FPGA SoC platforms, in which a high-performance SDR
runtime could be an alternative to an FPGA implementation for many signal
processing problems

@ Using a Kria KV260 board for development ($249 MSRP)
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Benchmarking flowgraph

@ Saxpy kernel: y[n] = ax[n] + b (note: usual saxpy has a vector in place of b)

Null Source

L Saxpy J—L Saxpy J‘ _'

Benchmark
Sink

@ Null Source does not do anything. Not even memset () the output to zero.
@ Benchmark Sink counts samples and measures the sample rate
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Saxpy kernel implementation

@ Hand-written assembly using NEON SIMD

@ Throughput of 1 float / clock cycle (2 FLOPs / clock cycle), which is the maximum
according to the Cortex-A53 hardware limitations:

@ 2 NEON units each capable of operating on a 64-bit vector
e 64-bit load path, 128-bit store path
o Load/store to SIMD register uses corresponding NEON unit
@ One AGU for load/store
@ For comparison, an optimal memcpy () is 1.33 floats / clock cycle (5.33 bytes / clock
cycle)
@ 2x as fast as the typical NEON code generated by gcc, clang and rustc, which is a
0.5 floats / clock cycle naive implementation

@ Heavily uses tricks related to the partial dual-issue capability of the Cortex-A53
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Saxpy kernel benchmark depending on buffer size
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Saxpy kernel benchmark depending on buffer size
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@ 32 KiB L1 cache (per core), 1 MiB L2 cache (shared by all cores)
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Some comments about SDR runtime performance

@ We want most of the CPU time to be spent on running our work () functions, rather
than something else

@ SDR runtime overhead depends on number of work () calls per second

@ Using large buffers for each work () call is not an option. Ideally we want to stay in
L1 cache (and definitely not go to DDR).

@ Fast simple kernels which can process an L1 cache worth of data quickly are the
worst case, since SDR runtime overhead can be significant

@ Some numbers for Saxpy kernel: 16 KiB buffer — 4096 floats. ~1 float/cycle at 1.33
GHz — 3 us per work () call.
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Saxpy kernel benchmark in multiple CPU cores

@ Rust channels used to send buffers between threads. Custom high-performance
channels implemented in gsdr.

@ One thread pinned to each CPU core
@ Fixed number of buffers passed around in a circuit formed by the threads
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12 12 12
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0 08 w08 w08
ki) i} b
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£ 06 £ 061 e 3 buffers gos
B Ll 4 4buffers 8
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Saxpy kernel benchmark of multiple kernels

@ M kernels and N CPU cores. Kernels statically pinned to CPU cores. Worst case,
ceil(M/N) kernels sharing a core.
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SDR runtime benchmark with a single Saxpy kernel and single core

@ Flowgraph: null source — saxpy — benchmark sink
@ Uses simplest scheduler to run all the blocks in the same CPU

1e9

FutureSDR GNU Radio 3.10  GNU Radio 4.0 gsdr.
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SDR runtime benchmark of multiple Saxpy kernels
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Conclusions

@ There is a lot of room for improvement in SDR runtime performance

@ What is the future of gsdr?
e Hard to say at this point. Might develop further or remain as an experiment
o Currently more intended as a source of ideas and to compare with other SDR runtimes
o If it develops further, the goal would be a lower-level runtime than GNU Radio. A middle
ground between having many things done/chosen for you versus having to write
everything from scratch.
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