Yet another new SDR runtime?

Dr. Daniel Estévez

1 February 2025
FOSDEM, Brussels

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 1/26

HOW STANDARDS PROLFERATE:

(<652 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

IH?! RiDICULOUS!
WE NEED To DEVELOP
.|| ONE UNIERSAL STANDARD _
SITUATION: || Timr covers EveRvone’s | | OITUATION:
THERE. ARE USE CASES. THERE. ARE

4 COMPETING YERH. I5 COMPETING

STANDARDS. \?O§ Eﬁj STANDARDS.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

Asking the big questions

@ Which is the one true best SDR runtime?

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 3/26

Asking the big questions

@ Which is the one true best SDR runtime?
@ What makes an SDR runtime be fast?
@ Look at GNU Radio 3.10, GNU Radio 4.0, and FutureSDR

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 3/26

All the SDR runtimes look the same!

Noise Source
Noise Type: Gaussian
Amplitude: 1

Seed: 0

Multiply Const
Constant: 42

Null Sink

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 4/26

All the SDR runtimes look the same!

Noise Source
Noise Type: Gaussian
Amplitude: 1

Seed: 0

Multiply Const
Constant: 42

Null Sink

@ Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 4/26

All the SDR runtimes look the same!

Noise Source
Noise Type: Gaussian
Amplitude: 1

Seed: 0

Multiply Const
Constant: 42

Null Sink

@ Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)

@ Different input and output buffers. Bad for cache.
@ High (and difficult to control) latency on TX flowgraphs

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 4/26

An alternative: closed circuits of “packets”

@ Samples are sent in “packets” rather than as a continuous stream

@ The flowgraph is divided into closed circuits, in which a fixed number of “packets”
always exist

@ “Packets” are recycled by sending them from a sink back to a source

Noise Source
Noise Type: Gaussian

Amplitude: 1
Seed: 0

Multiply Const
Constant: 42

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 5/26

An alternative: closed circuits of “packets”

@ Samples are sent in “packets” rather than as a continuous stream

@ The flowgraph is divided into closed circuits, in which a fixed number of “packets”
always exist

@ “Packets” are recycled by sending them from a sink back to a source

Noise Source
Noise Type: Gaussian

Amplitude: 1
Seed: 0

@ Many blocks can work in-place on a “packet”

Latency is determined by the number of “packets” in a circuit

@ “Packets” can mark natural sections in the data (aligned to RF frame sections, etc.).
Potentially less need for tags.

@ More similar to a hand-crafted implementation where functions are called in
sequence on the same buffer

Multiply Const
Constant: 42

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

The idea of a quantum

@ Let’s call this “packet” a quantum, because it is cool and because packet and frame
are heavily overloaded
@ A quantum contains:

o A buffer with flexible margins. The margins allow inserting/adding a prefix/suffix in-place.
Example use cases: CRC, synchronization word, cyclic prefix.

o Tags, referred to sample indices within the packet

o Perhaps other metadata that the user might need?

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

A more complex example flowgraph

l:::i‘:;.::i‘::'xl'a“"g i rter B regacking Decimating FIR Filter Rate: ::3005
N Loop Bandwidth: 251.327u e .
Taps: firdes.low_pass(1, 1... Decimation: 2 Reference: 1
Min Phase/sample: -3,14159 .
Center Frequency: 3M Max Phase/sample: 3.14150 Taps: firdes.low_pass(1, 1... Gain: 1
L Max Gain: 65 536k

Sample Rate: 10M

UHD: USRP Source
Sync: Unknown PPS
Samp rate (Sps): 10M
[| cho: center Freq (Hz): 0
Cho: AGC: Default
ChO: Gain Value: 0
ChO: Antenna: RX2

File Sink
A File: a
Unbuffered: Off
Append file: Overwrite

Frequency Xlating FIR Filter AGC
Decimation: 1 L Can’i-er Tracking Decimating FIR Filter Rate: 100u
Loop Bandwidth: 251.327u
Taps: firdes.low_pass(1, 1., N Decimation: 2 Reference: 1
Min Phase/sample: -3.14159
Center Frequency: -3M Taps: firdes.low_pass(1, 1... Gain: 1
Max Phase/sampl .
Sample Rate: 10M Max Gain: 65.536k

File Sink

File: b
Unbuffered: Off
Append file: Overwrite

Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 7/26

UHD: USRP Source
Sync: Unknown PPS
Samp rate (Sps): 10M

-——

Y

Frequency Xlating FIR Filter
Decimation: 1

Taps: firdes.low_pass(1, 1...
Center Frequency: 3M
Sample Rate: 10M

Frequency Xlating FIR Filter
Decimation: 1

Taps: firdes low_pass(1, 1...
Center Frequency: -3M
Sample Rate: 10M

PLL Carrier Tracking
Loop Bandwidth: 251.327u
Min Phase/sample: -3,14159
Max Phase/sample: 3.14159

PLL Carrier Tracking
Loop Bandwidth: 251.327u
Min Phase/sample: -3.14159
Max Phase/sample: 3,14159

other new SDR runtime?

AGC

Decimating FIR Filter Rate: 100u
Decimation: 2 Reference: 1
Gain: 1

Taps: firdes.low_pass(1,

Max Gain: 65.536k

File Sink
File: a
Unbuffered: Off
Append file: Overwrite

AGC
Rate: 100u
Reference: 1
Gain: 1

Max Gain: 65.536k

Decimating FIR Filter
Decimation: 2
Taps: firdes.low_pass(1, 1...

File Sink

File: b
Unbuffered: Off
Append file: Overwrite

FOSDEM 2025 8/26

@ https://github.com/daniestevez/gsdr

@ An implementation of these ideas in Rust using async

@ Some benchmarks comparing with GNU Radio 3.10, GNU Radio 4.0 and FutureSDR
@ Still an experimental work-in-progress

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 9/26

https://github.com/daniestevez/qsdr

Schedulers in gsdr

@ GNU Radio 4.0 and FutureSDR support custom schedulers, but they are quite
specific and not easy to write

@ gsdr schedulers are based on Rust streams, so any code that can run streams can
be a gsdr scheduler

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 10/26

@ A stream is an object that can produce a sequence of values asynchronously

let mut stream = stream::iter(1l..=3);
assert_eq! (stream.next().await, Some(1l));
assert_eq!(stream.next().await, Some(2));

assert_eq!(stream.next().await, Some(3));

assert_eq!(stream.next() .await, None);

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

@ A stream is an object that can produce a sequence of values asynchronously

let mut stream = stream::iter(1..=3);

t_eqg!(stream.next() .await, Some(1l));
“t_eqg!(stream.next() .await, Some(2));
t_eqg!(stream.next() .await, Some(3));

rt_eq!(stream.next() .await, None);

@ A gsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done Or an error

@ A gsdr block is converted to a stream. Each next () call on this stream calls the
work function once, and returns either an error or nothing.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

@ A stream is an object that can produce a sequence of values asynchronously

let mut stream = stream::iter(1..=3);

t_eqg!(stream.next() .await, Some(1l));
t_eq! (stream.next().await, Some(2));
t_eq! (stream.next().await, Some(3));

rt_eq!(stream.next() .await, None);

@ A gsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done Or an error

@ A gsdr block is converted to a stream. Each next () call on this stream calls the
work function once, and returns either an error or nothing.

@ A gsdr scheduler is just some code that performs calls to multiple streams on one or
several threads until all of them are done or there is an error

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

@ Stream combinators are useful to build schedulers. For instance, sequence?2 ()
takes 2 streams (which produce items of type Result< (), E>)and produces a
stream (with the same item type) that calls each of the 2 streams in sequence

@ The helper function run () takes a stream and produces a future (an async result)

that calls the stream until it is done or there is an error. This is usually the top-level
element of the scheduler on each thread

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

type B = CacheAlignedBuffer<f32>;
let buffer_size = 4096;
let num_buffers = 4;

let head_elements = 100_080_000;

let buffers = std::iter::repeat _with(|| Quantum::new(B::new(buffer_size))).take(num_buffers);

let mut fg = Flowgraph::new();

let source = fg.add_block(NullSource::<Quantum>::new());
let head = fg.add_block(Head::<Quantum, Spsc, SpscRef>::new(head_elements));
let sink = fg.add_block(NullSink::<Quantum>::new());

let mut circ = fg.new_circuit(buffers);
fg.connect(&mut circ, source.output(), head.input())?;
fg.connect_with_return(&mut circ, head.output(), sink.input(), source.input())?;

let mut fg = fg.validate()?;

let source = fg.extract_block(source)?;
let head = fg.extract_block(head)?;
let sink = fg.extract_block(sink)?;

println!("running flowgraph...");
block_on(run(sequence3(
source.into_stream(),
head.into_stream(),
sink.into_stream(),
M2
println!("flowgraph finished");
FOSDEM 2025 13/26

Daniel Estévez Yet

#[derive(Block, Debug)]

#[qsdr_crate = "crate"]

#[work (WorkInPlace)]

pub struct Head<T, Cin = Spsc, Cout = Spsc>

impl<T, C€in, Cout> WorkInPlace<T> for Head<T, Cin, Cout>
where

Cin: Channel,

Cin::Receiver<T>: Receiver<T>,

where Cout: Channel,

Cin: Channel,

. . . {
Cin::Recelver<T>: Recelver<T>, async fn work_in_place(&mut self, _: &mut T) -> Result<WorkStatus> {
Cout: Channel, .
assert!(self.remaining > 0);
e M . self.remaining -= 1;
or .
lp 1 . if self.remaining == @ {
input: PortIn<T, Cin>,
M . Ok(DoneWithOutput)
or
tp ! } else {
output: PoOrtoOut<T, Cout>,
o Ok(Run)
remaining: u64, }
}
}
}

impl<T, C€in, Cout> Head<T, Cin, Cout>
where
cin: channel,
Cin::Recelver<T>: Recelver<T>,
Cout: Channel,

{
pub fn new(count: u64) -> self {
self {
input: Default::default(),
output: Default::default(),
remaining: count,
3
}
}

Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 14/26

Benchmarking methodology

@ Choose a family of simple flowgraphs

@ Write by hand an implementation that performs as best as possible

@ Write implementations in gsdr, GNU Radio 3.10, GNU Radio 4.0 and FutureSDR
@ Measure the rate (samples/second) at which each implementation can run

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 15/26

Benchmarking platform

@ Quad-core Cortex-A53 in AMD (Xilinx) MPSoC (1.33 GHz clock)

@ Found in many AMD FPGA SoC platforms, in which a high-performance SDR
runtime could be an alternative to an FPGA implementation for many signal
processing problems

@ Using a Kria KV260 board for development ($249 MSRP)

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 16/26

Benchmarking flowgraph

@ Saxpy kernel: y[n] = ax[n] + b (note: usual saxpy has a vector in place of b)

Null Source

L Saxpy J—L Saxpy J‘ _'

Benchmark
Sink

@ Null Source does not do anything. Not even memset () the output to zero.
@ Benchmark Sink counts samples and measures the sample rate

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 17/26

Saxpy kernel implementation

@ Hand-written assembly using NEON SIMD

@ Throughput of 1 float / clock cycle (2 FLOPs / clock cycle), which is the maximum
according to the Cortex-A53 hardware limitations:

@ 2 NEON units each capable of operating on a 64-bit vector
e 64-bit load path, 128-bit store path
o Load/store to SIMD register uses corresponding NEON unit
@ One AGU for load/store
@ For comparison, an optimal memcpy () is 1.33 floats / clock cycle (5.33 bytes / clock
cycle)
@ 2x as fast as the typical NEON code generated by gcc, clang and rustc, which is a
0.5 floats / clock cycle naive implementation

@ Heavily uses tricks related to the partial dual-issue capability of the Cortex-A53

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

4c4082944
4919084
9804140
419190a5
f040254b
479190ck
f9482d4c
419190e7
79408354d
4e30d484
f9403dde
4e3@8d4as
9483947
4e308d4ch
79804100
Td402140
4elB81ldc3
fd402941
4e181d60
fd483142
4e181d8l
4e081de3
4elB8lda2
4e30d4e?
41919000
9484540
41919021
47919042
f9404ddc
410919063
T9408554d
4e308d400
f9485dde
4e30d421
794085947
4c002944
fd404945
4e181dc7?
fd485146
4e181d85
Tc480d44

Daniel Estévez

1dl
fmul
prim
Tmul
ldr
Tmul
ldr
fmul
ldr
Tadd
ldr
Tadd
ldr
fadd
prim
ldr
mov
ldr
mov
ldr
mov
mov
mov
fadd
Tmul
ldr
fmul
fmul
ldr
Tmul
ldr
fadd
ldr
Tadd
ldr
stl
ldr
mov
ldr
mov
ldr

{v4.45-v7.4s5}, [x18]
wvd.ds, vd. 45, v17.5[0]
pldllkeep, [x10, #128]
w5.4s, v5.4s, v17.s[0]
x11, [x1@, #72]

v6.4s, vb.4s, v17.s[0]
x12, [x10, #88]

w7.4s, v7.4s5, v17.5[0]
x13, [x10, #le4]
vd.4s, vd.4s, v16.4s5
x14, [x10, #120]
v5.4s, v5.4s, v16.ds
x15, [x10, #112]
wb.4s, vb.4s5, v16.ds
pldllkeep, [x8, #128]
do, [x1@, #64]
w3.d[1], x14

dl, [x1@, #B80]
wB.d[1], x11

d2, [x1@, #96]
vl.d[1l], x12

v3.d[@], x15

v2.d[1], =13

w7.4s, vw7.4s, v16.ds
vB.4s, v0.4s, v17.s[0]
x11, [x18, #136]
wl.4s, vl.4s, v17.s5[0]
v2.45, v2.4s, v17.5[0]
x12, [x10, #152]
w3.4s, v3.ds, v17.s5[0]
x13, [x10, #168]
vB.4s5, v0.4s5, v16.ds
x14, [x18, #184]
vl.4s, vl.4s, v16.4s
x15, [x10, #176]
{v4.4s5-v7.4s}, [x10]
d5, [x10, #144]
w7.d[1], x14

d6, [x10, #168]
vw5.d[1], x12

d4, [x1l@, #128]!

Yet

4elB8ldab
4e081de7?
4e181d64
4e30d442
To806100
4e30d463
foanslea
47919084
9404500
4f91908a5
479190¢ch
To404dec
4f9190e7
fo4o550d
4e30d484
f9405d0e
4e30d4as
T940590T
4c002908
fd4p4001
4e181dc3
fdaps1e2
4e181d81
Tc480d00
4elBlda2
4e081del
4e181d68
4e30d4ch
eb09815f
4e30dde?
54fffazl
4f919008
4919021
47919042
47919063
4c002944
4e30d408
4e30d421
4e30d442
4e30d463
4c002900

mov
mov
mov
fadd
prim
Tadd
prfm
Tmul
ldr
fmul
fmul
ldr
fmul
ldr
Tadd
ldr
fadd
ldr
stl
ldr
mov
ldr
mov
ldr
mov
mov
mov
fadd
cmp
fadd
b.ne
fmul
fmul
fmul
fmul
stl
Tadd
fadd
fadd
Tadd
stl

v6.d[1], x13
v7.d[e], x15
v4.d[1], x11
v2.4s5, v2.45, v16.4s
pldllkeep, [x8, #192]
v3.4s, v3.4s, v16.4s
pldllkeep, [x8, #256]
vd.4s, vd4.4s, v17.s5[0]
x11, [x8, #136]

v5.4s, v5.45, v17.s5[0]
v6.4s5, v6.4s5, v17.5[0]
x12, [x8, #152]

v7.4s, v7.4s, v17.s[0]
x13, [xB8, #168]

vd.4s, v4.4s, v16.4s
x14, [x8, #184]
v5.4s5, v5.45, v16.4s
x15, [x8, #176]
{v0.4s5-v3.45}, [x8]
dl, [x8, #144]
v3i.d[1], x14

d2, [xB, #160]
vl.d[1], x12

de, [x8, #128]!
v2.d[1], x13

v3.d[e], x15

v@.d[1], x11

v6.45. vb6.45. vl6.4s
x10, x9

v7.d4s, v7.4s, v16.ds
l40c8

vB.4s5, vB.4s5, v17.5[0]
vl.ds, vl.4s, v17.s5[0]
v2.4s, v2.4s5, v17.5[0]
v3.4s, v3.4s5, v17.5[0]
{vd.4s-v7.4s5}, [x10]
ve.4s, vB.4s, v16.4s
vl.4s, vl.4s5, v16.4s
v2.4s5, v2.45, v16.4s
v3.4s, v3.4s5, v16.4s
{v0.45-v3.45}, [x8]

FOSDEM 2025

19/26

Saxpy kernel benchmark depending on buffer size

les
124 //’—-H—T
104

T T T T U T T T
512 bytes Z kiB 8 kiB 32kiB 128 kiB 512kiB 2 MIB 8 MiB
Buffer size

samples/s
o o
@ @

o
.

o
)
L

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 20/26

Saxpy kernel benchmark depending on buffer size

les
124 //’—-H—T
104

T T T T U T T T
512 bytes Z kiB 8 kiB 32kiB 128 kiB 512kiB 2 MIB 8 MiB
Buffer size

samples/s
o o
@ @

o
.

o
)
L

@ 32 KiB L1 cache (per core), 1 MiB L2 cache (shared by all cores)

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 20/26

Some comments about SDR runtime performance

@ We want most of the CPU time to be spent on running our work () functions, rather
than something else

@ SDR runtime overhead depends on number of work () calls per second

@ Using large buffers for each work () call is not an option. Ideally we want to stay in
L1 cache (and definitely not go to DDR).

@ Fast simple kernels which can process an L1 cache worth of data quickly are the
worst case, since SDR runtime overhead can be significant

@ Some numbers for Saxpy kernel: 16 KiB buffer — 4096 floats. ~1 float/cycle at 1.33
GHz — 3 us per work () call.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

Saxpy kernel benchmark in multiple CPU cores

@ Rust channels used to send buffers between threads. Custom high-performance
channels implemented in gsdr.

@ One thread pinned to each CPU core
@ Fixed number of buffers passed around in a circuit formed by the threads

es 2 CPU cores Tea 3 CPU cores 1es 4 CPU cores
12 12 12
10 10 10
0 08 w08 w08
ki) i} b
- - g
£ 06 £ 061 e 3 buffers gos
B Ll 4 4buffers 8
04] —e= 2butters 04] e 5 butters 04
o 3 butfers —e— G buffers
—8— 4 buffers —&— 7 buffers
02 —o— 5 puffers 021 —o— g buffers 02
e~ 6 buffers 9 buffers
00 0.0 0.0
4 kiB B kiB 16 kiB 32 kiB 64kiB 128 kiB 256kiB 512 kiB 4 kiB BkiB 16 kiB 32 kiB 64 kiB 128 kiB 256 kiE 512 kiB 1kiB 2 kiB 4 kiB B kB 16 kiB 32 kiB 64 kiB
Buffer size Butfer size Buffer size

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 22/26

Saxpy kernel benchmark of multiple kernels

@ M kernels and N CPU cores. Kernels statically pinned to CPU cores. Worst case,
ceil(M/N) kernels sharing a core.

1ea 2 CPU cores, 3 buffers 1es 3 CPU cores, 4 buffers 1es 4 CPU cores, 5 buffers
—8— Buffer size 4 kiB —8— Buffer size 4 kiB —%— Buffer size 1 kiB
12 o Buffer size 8 kiB 12 #- Buffer size 8 kiB 12
—&- Buffer size 16 kiB —e— Buffer size 16 kiB
10 —e~ Buffer size 32 kiS 10 —e— Buffer size 37 kIS 10
—e— Buffer size 64 ki —e— Buffer size 64 kiB
w08 —e- Buffer size 128 kB w08 —e— Buffer size 128 kB 08
g Buffer size 256 ki8 | Buffer size 256 kB |
s —e- Buffersize 5128 | o L2 3 .. —o— Buffersize512 kB | 3
£ o6 Eos Eos
g 8 8
04 = 9 04 04
0 \\’_ﬂ“‘ 0 .
00 00 00
2 3 4 H 6 3 a 5 6 7 8 9
Number of kemels

Daniel Estévez

Number of kemels

Yet another new SDR runtime?

Number of kernels

FOSDEM 2025

23/26

SDR runtime benchmark with a single Saxpy kernel and single core

@ Flowgraph: null source — saxpy — benchmark sink
@ Uses simplest scheduler to run all the blocks in the same CPU

1e9

FutureSDR GNU Radio 3.10 GNU Radio 4.0 gsdr.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 24/26

SDR runtime benchmark of multiple Saxpy kernels

samplesfs

samplesfs

o
@

o
&

1eg 1 CPU cores
1 2 3

Number of kemels

3 CPU cores

Number of kemels

Daniel Estévez

14444444

114444444

FutureSDR (custom sched)
FutureSDR (smol sched)

GR 3.10 (thread affinities}
GR 3.10 (no thread affinities)
GR 4.0 (custom sched)

GR 4.0 (simple sched)

asdr (custom sched)

Qsdr (async-executor sched)
asdr (tokio sched)

FutureSDR (custom sched)
FutureSDR (smol sched)

GR 3.10 (thread affinities}
GR 3.10 (no thread affinities)
GR 4.0 (custom sched)

GR 4.0 (simple sched)

asdr (custom sched)

Qsdr (async-executor sched)
asdr (tokio sched)
emel-async

samplesfs

samples/s

o
@

o
&

new SDR runtime

2 CPU cores

a
Number of kemnels

4 CPU cores

8 9 10 1 12
Number of kemels

FOSDEM 2025

AESTEEEEE!

114444444

FutureSDR (custom sched)
FutureSDR (smol sched)

GR 3.10 (thread affinities)
GR 3.10 (no thread affinities)
GR 4.0 fcustom sched)

GR 4.0 (simple sched)

asdr (custom sched)

asdr (async-executor sched)
qsdr (tokio sched)
multi-kernel-async

FutureSDR (custom sched)
FutureSDR (smol sched)

GR 3.10 (thread affinities}
GR 3.10 (no thread affinities)
GR 4.0 (custom sched)

GR 4.0 (simple sched)

asdr (custom sched)

Qsdr (async-executor sched)
asdr (tokio sched)
multi-kernel-async

25/26

Conclusions

@ There is a lot of room for improvement in SDR runtime performance

@ What is the future of gsdr?
e Hard to say at this point. Might develop further or remain as an experiment
o Currently more intended as a source of ideas and to compare with other SDR runtimes
o If it develops further, the goal would be a lower-level runtime than GNU Radio. A middle
ground between having many things done/chosen for you versus having to write
everything from scratch.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025

