Amateur Decoding of Deep Space Missions

Dr. Daniel Estévez (EA4GPZ / M0HXM)

16 September 2023 AMSAT-DL 50th anniversary symposium

Brief recap about deep space communications

- RF signals are transmitted between spacecraft and Earth for: telemetry, telecommand and navigation.
- Typical downlink bands: S-band (2.2 GHz), X-band (8.4 GHz), more recently K_a-band (32 GHz) and K-band (~26 GHz, near space).
- Free space losses are huge. Large antennas used on ground (30m 70m typical).
- Deep Space Networks operate with several sites distributed on Earth to give global coverage: NASA DSN (Madrid, Goldstone, Canberra), ESA Estrack deep space (Cebreros, New Norcia, Malargüe), China Deep Space Network...
- Standard protocols used often, to simplify inter-agency collaboration.
- Lots of documentation publicly available: CCSDS books, NASA Telecommunications Link Design Handbook.
- Ephemerides available online in NASA HORIZONS (usually).
- DSN Now and ESTRACKnow (live DSN status).

- Reception of deep space satellites by amateurs, typically with relatively small antennas.
- Traditionally, limited to the detection of the signal (residual carrier). Information cannot be decoded due to too low SNR.
- Activity popular within microwave enthusiasts: home-made 8.4 GHz receivers due to the lack of affordable off-the-shelf hardware.
- Typical achievements by the community: detection of signals as far as Jupiter or Saturn, some detections of Voyager 1.

A new trend in Amateur DSN: decoding telemetry

- Shortly after launch and during Earth flybys the signal is strong enough to be demodulated and decoded.
- Many decoding opportunities over the last few years, due to a higher number of launches.
- An increasing number of Moon missions lately.
- Recent inferior conjunction of STEREO-A.
- Additional opportunities due to collaboration with larger sites:
 - Bochum Observatory, 20m antenna, managed by AMSAT-DL.
 - Dwingeloo radiotelescope, 25m antenna, managed by CAMRAS (only S-band).
 - The Allen Telescope Array, 42x 6.1m antennas, managed by SETI Institute.
- Increase of readily available software to decode these signals:
 - GNU Radio decoders by D. Estévez.
 - SatDump, by Alan Antoine F4LAU.
 - Decoders by r00t.cz.

4/22

- Started at the beginning of 2020, with some ESA Solar Orbiter and BepiColombo recordings by Paul Marsh M0EYT.
- Made some GNU Radio decoders for these.
- In July 2020, Tianwen-1 launched to Mars. Huge tracking project with AMSAT-DL and Bochum.
- Continued decoding and blog posting about most deep space missions launched since then.

Tianwen-1

- Chinese Mars orbiter, lander and rover.
- Key dates:
 - July 2020, launch.
 - February 2021, Mars orbit injection.
 - May 2021, Zhurong rover landing.
 - November 2021, remote sensing orbit.
- Orbit information not public, but we found it in the telemetry.
- Bochum has been receiving some telemetry almost daily since the beginning of the mission, and until the present date.
- Tracked the mission with as much detail as possible.
- AMSAT-DL's YouTube livestream covering key events in the mission.
- Paper with Mario DL5MLO and Peter DB2OS published in GRCon21's proceedings: Deep space reception of Tianwen-1 by AMSAT-DL using GNU Radio.

6/22

YouTube livestream during Zhurong's landing

Dr. Daniel Estévez (EA4GPZ / M0HXM)

Tianwen-1's remote sensing orbit

Dr. Daniel Estévez (EA4GPZ / M0HXM)

- Emirates Mars Mission (Hope) launched in July 2020 (same launch window as Tianwen-1 and Mars 2020 Perseverance).
- AMSAT-DL livestreamed the Mars orbit injection in February 2021.
- The audio from the livestream can be used for Doppler analysis.
- But this is cumbersome. Recording IQ data would be much better!

Waterfall of livestream audio

Audio recording at burn start

Dr. Daniel Estévez (EA4GPZ / M0HXM)

Amateur Decoding of Deep Space Missions

AMSAT-DL symposium 2023 1

10/22

After fixing the sawtooth Doppler correction and correcting for drift

Dr. Daniel Estévez (EA4GPZ / M0HXM)

Chang'e 5

- Chinese lunar sample return mission (December 2020).
- Stack of four spacecraft transmitting different signals: orbiter, re-entry capsule, lander, descender.
- Tracked mainly with the Allen Telescope Array.
- Bochum received some 5 Mbps data from the lander on the lunar surface at X-band.

Dr. Daniel Estévez (EA4GPZ / M0HXM)

Hakuto M1 and Lunar Flashlight

- Launched together to the Moon on December 2022 (one month after Artemis I).
- Both received by Bochum in the days following launch.

GNU Radio decoder for Hakuto M1:

Attitude quaternions for Lunar Flashlight

Lunar Flashlight gyroscope vs. guaternions comparison -0.21 -0.22 Angular velocity (deg/s) -0.23 -0.24 -0.25 -0.26 Gyroscope norm (scaled) -0.27 Quaternion angular velocity 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 Space Packet timestamps

Dr. Daniel Estévez (EA4GPZ / M0HXM)

Lunar Flashlight body Z axis in ICRF equatorial coordinates vs. Sun vector

Hakuto M1 crashing on the Moon (April 2023)

Report with Iban EB3FRN, Peter DB2OS, Edgar DF2MZ and James G3RUH

Dr. Daniel Estévez (EA4GPZ / M0HXM)

- Art project by Daniela de Paulis, in collaboration with SETI Institute, ESA and INAF.
- Transmission of a simulated alien message from ESA TGO Mars orbiter.
- X-band signal recorded with Green Bank Telescope (100m dish), Medicina telescope (32m dish), and the Allen Telescope Array (20x 6.1m dishes).
- Raw IQ recordings published for the public to extract and interpret the message (interpretation still ongoing).
- Exposure to deep space communications for a much wider audience.
- Bochum and RAEGE 13.2m dishes in Yebes and Santa Maria also joined at short notice.

We are happy to inform that we recorded 10GB of IQ data during the @asigninspace @danieladepaulis @ESA_TGO live event signal with the 20m dish @SternwarteBO and that we received most of the message with good SNR to decode. Thanks to @ea4gpz who checked the recording using the same procedure as for the other telescopes. Only a few frames failed to be decoded. The recording started a few minutes after the beginning of the message reception. Almost all the message can be recovered from the Bochum Observatory recording, except for a few small pieces due to the lost frames, and a small part at the beginning. Dani is currently working on trying to improve the decoder to see if he can get to zero lost frames.

5:21 PM · May 27, 2023 · 20.2K Views

Dr. Daniel Estévez (EA4GPZ / M0HXM)

- This summer, STEREO-A has been much nearer to Earth for the first time since launch.
- Possible to decode the 633 bps space weather beacon with small stations (60cm dish).
- Receiving this beacon is Bochum's "day job".
- Many amateurs worldwide have joined this activity.
- Obtain sun images thanks to some reverse-engineering by Alan F4LAU and Scott VE7TIL.
- Global collection of decoded data led by Scott VE7TIL.

Animation of one solar day worth of data

Scott Tilley = @coastal8049 · Jul 23 The Solar day via the STEREO-A EUVI 309 imager.

...

Dr. Daniel Estévez (EA4GPZ / M0HXM)

- These are exciting times for deep space mission tracking.
- More exciting times are coming (recent news that NASA DSN is under pressure from growing demand).
- Large facilities such as Bochum play a central role in amateur tracking.
- A lot of dedication is needed to track these missions. Some missed opportunties due to lack of operators. More people involved and/or automation needed.
- Try to record data in the rawest format possible (often IQ data), to allow for more powerful analysis.
- Share the data. Share observation details.