
Maia SDR: an Open-Source FPGA-Based SDR
Project Focusing on the ADALM Pluto

Daniel Estévez
Independent Researcher

Madrid, Spain
daniel@destevez.net

Abstract—Maia SDR is a new open-source project with the
main goal of promoting FPGA development for SDR and increas-
ing the collaboration between the open-source SDR and FPGA
communities. In the first stage of the project, the focus is on the
development of a firmware image for the ADALM Pluto that
performs most of the signal processing on the FPGA of its Zynq
system-on-chip.

A first version already provides a real-time waterfall display
at up to 61.44 Msps in a WebSDR-like interface, and supports
recording IQ samples at up to 61.44 Msps in the Pluto DDR (400
MiB maximum recording size).

The FPGA design is written in Amaranth, a Python-based
HDL. There is an application running on the Zynq ARM CPU
that provides a web server with a REST API for user interface
and control. It is written in asynchronous Rust. Finally, the user
interface is a web application written in Rust and compiled to
WebAssembly. It uses WebGL2 to render the waterfall using a
GPU.

Index Terms—SDR, FPGA, Zynq, DSP, Rust, WebAssembly,
WebGL2, ADALM Pluto

I. INTRODUCTION

Maia SDR [1] is a new open-source project with the goal
of developing radio applications whose signal processing runs
mainly on an FPGA. The longer term goals of the project are
to foster open-source development of SDR applications on
FPGA, and to promote the collaboration between the open-
source SDR and FPGA communities. At the start of this
project, instead of developing custom hardware, focusing on
developing a firmware image for the Analog Devices ADALM
Pluto that uses the FPGA for most of the signal processing
gives realistic goals and provides a product based on readily
available hardware that people can already use during early
stages of development.

The first version of Maia SDR was released in February
2023, though its development started in September 2022. This
version consists of a firmware image for the ADALM Pluto
with the following features:

• Web-based interface that can be accessed from a smart-
phone, PC or other device.

• Real-time waterfall display supporting up to 61.44 Msps
(limit given by the AD936x RFIC of the Pluto).

• IQ recording in SigMF format [2], at up to 61.44 Msps
and with a 400 MiB maximum data size (limit given by
the Pluto DDR size). Recordings can be downloaded to
a smartphone or other device.

Fig. 1. Screenshot of the Maia SDR web user interface running on an Android
phone.

Exploring the RF world in the field with a portable device
is one of the goals of Maia SDR, so its web user interface
is developed having in mind the usage from a smartphone
(see Figure 1). It fully supports touch gestures to zoom and
scroll the waterfall. A Pluto connected by USB Ethernet to a
smartphone gives a capable and portable tool to discover and
record signals.

Maia SDR is formed by three components:

• maia-hdl, which is the FPGA design. It is written in
Amaranth [3], a hardware description language based on
Python. It includes a custom pipelined FFT core focusing
on low resource usage and flexible configuration, and
DMAs with low resource usage and high throughput.

• maia-httpd, which is an application that runs in the
ARM CPU in the Pluto Zynq. It is written in asyn-
chronous Rust [4] and provides an HTTP server that
serves the web user interface and allows control using a
REST API. The waterfall data is sent using WebSockets.
This allows to control and access Maia SDR from scripts
and other applications easily.

• maia-wasm, which is a web application that serves
as the user interface. It is written in Rust, which gets
compiled to WebAssembly. The waterfall is rendered on
the client’s GPU using WebGL2.

Additionally, there is a Linux kernel module called maia
-kmod that is used to handle the DMA buffers required by
the maia-hdl IP core.

This paper describes the main technical features in Maia
SDR. Section II shows the main components, clocking and



FPGA utilization of maia-hdl. Section III mentions the
main features of the maia-httpd application that runs on
the ARM CPU of the Zynq. Section IV describes the web
user interface maia-wasm. Section V explains some tricky
aspects regarding the CPU caches, and how they are solved
by the Linux kernel module maia-kmod. The paper finishes
with some conclusions in Section VI.

II. FPGA DESIGN: MAIA-HDL

The FPGA design of Maia SDR is called maia-hdl. It is
bundled as a Python package, to make it easier to reuse the
modules in third-party designs. The main design drivers of
maia-hdl are low resource usage and flexibility. The Zynq
7010 FPGA in the ADALM Pluto is not particularly large (see
Section II-F), so low resource usage is important to fit as many
features as possible in the FPGA.

The maia-hdl implementation is written in Amaranth,
which is a Python-based HDL and toolchain. Amaranth is an
important project in the open-source FPGA community, and
there are some previous projects using Amaranth for radio
applications [5] [6]. Amaranth gives many advantages over a
traditional HDL such as Verilog or VHDL, since Python has
much higher expressiveness than these HDLs. This is very
useful to decide design parameters at synthesis time, following
fairly complex rules described in code. See [7] for concrete
examples.

A. FFT core

One of the main modules of maia-hdl is a custom
pipelined FFT core. It supports radix-2, radix-4 and radix-
22 single-delay-feedback decimate-in-frequency architectures
(see [8], for instance), and can optionally apply a window
before the FFT computation. To reduce the number of DSPs
used, it is possible to perform the complex products required
to apply the twiddle factors with a single DSP that runs with
a clock frequency three times that of the data, instead of using
three DSPs (an efficient implementation of the product of
two complex numbers requires only three real multiplications).
Likewise, it is possible to apply the window to the real and
imaginary parts of the input using a single DSP that runs at
twice the clock frequency of the data instead of two DSPs.
Calculations are done in fixed-point arithmetic, and truncation
(instead of rounding or convergent rounding) is used for
scaling between the stages, in order to save logic resources.
The truncation schedule is configurable.

The FFT core can store the delay lines required by
the single-delay-feedback butterflies either in SRL primitives
(which use LUTM resources) or in BRAM. Likewise, the
twiddle factors can be stored in LUTs or BRAM. By default,
there are automatic rules that decide which resource to use
depending on the number of elements to be stored (which
depends on the pipeline stage and the FFT size), but this choice
can be overridden.

In the Maia SDR Pluto firmware, the FFT core is used to
implement a spectrometer that computes the waterfall data. It
is configured with a size of 4096 points, a Blackman-harris

window, and a radix-22 single-delay-feedback architecture
(since among the supported ones, this architecture gives the
lowest resource usage). The input is 12 bits wide (matching
the AD936x ADC), and the output is 18 bits wide. The FFT
core runs using a clock of 62.5 MHz used as data clock (this
value is slightly larger than the maximum sample rate of 61.44
Msps), and 2x and 3x clocks at 125 MHz and 187.5 MHz to
reuse DSPs as described above.

B. Spectrometer

The FFT core is used in a spectrometer, which generates
the waterfall data. First, the windowed FFT of each 4096-
point vector of IQ samples is computed. No IQ samples
are discarded in this process, so the FFT runs at the full
sample rate of the AD936x. Next, the modulus squared of
the FFT output is calculated, and several consecutive FFT
vectors are integrated (non-coherently) to reduce the data rate
and increase the sensitivity. This produces measurements rep-
resenting average power spectral density. A max-hold option
that uses a maximum function instead of a summation will be
implemented in the future.

The measurement rate, defined by the number of FFT
vectors that are integrated together, is configurable at runtime.
The maximum number of integrations per measurement that
is supported is 1023. This gives a measurement rate of 14.7
Hz at 61.44 Msps. The minimum number of integrations per
measurement is one, but this produces a very high output rate
and measurements are lost in the RAM circular buffer used to
pass the data from the FPGA to the CPU using a DMA.

C. DMAs

There are two custom DMA engines used in Maia SDR:

• DmaBRAMWrite. It copies the contents of a BRAM into
one of the buffers of a circular buffer in DDR. It is
used in the spectrometer. Each spectrometer measurement
(integrated FFTs) corresponds to one of the copies of this
DMA.

• DmaStreamWrite. It reads data from an interface
similar to AXI4-Stream and writes to a buffer in DDR
until the end of the buffer is reached or a stop command
is received. It is used in the IQ recorder.

The main design driver of these DMAs is simplicity, low
resource usage and high performance. They have a minimal
set of control inputs, and the addresses and sizes of the
buffers are statically defined at synthesis time. Additionally,
they implement the AXI3 protocol instead of AXI4, because
the HP (high performance) ports that connect the FPGA to
the Zynq PS (processing system, meaning CPU) use AXI3.
In contrast, Xilinx’s ecosystem, which is commonly used in
FPGA designs for the Zynq, is based on AXI4, so a protocol
converter IP core is required to interface to the PS.

These two DMAs are a good example of how an AXI3
Manager can be implemented in a minimalist way.



D. AD936x interface

The interface to the AD936x RFIC in the Maia SDR FPGA
design is done using the Analog Devices axi_ad9361 IP
core. This is the same IP core that is used in the default
firmware for the Pluto and in other reference designs from
Analog Devices. In Maia SDR, this IP core has been con-
figured to reduce its resource usage: IQ corrections, ADC
DC filtering and DAC DDS are disabled, and the number of
RX/TX data path channels is set to one (the AD9363 and
AD9361 support two RX and two TX channels, but in Pluto
hardware revisions B and earlier the second channel is not
even routed in the PCB).

Even with this configuration, the axi_ad9361 IP core has
a relatively high resource usage compared to other modules
in the Maia SDR FPGA design. Probably a custom AD936x
interface could be implemented with much lower resource
usage. Perhaps this will be done in the future, when resource
usage becomes important to add more functionality to the
design.

E. Clocking

These are the clocks used in the Maia SDR FPGA design:
• AD936x interface clock. It is a clock generated by

the AD936x and received through the CMOS interface
between the AD936x and the FPGA. Its frequency cor-
responds to the sample rate, so it ranges between slightly
above 2 MHz and 61.44 MHz. This clock is used by
the axi_ad9361 core and by the part of the Maia
SDR IP core that receives the ADC IQ samples from the
axi_ad9361 core. The IQ samples go through clock
domain crossings at the inputs of the spectrometer and the
IQ recorder as described below. For these, the FIFO18 36
primitive is used, since it gives an effective and low
resource usage way of doing clock domain crossing for
a stream of data.

• 100 MHz clock FCLK0. In Zynq designs it is very
common to use one of the four PL (programmable logic)
clocks available in the PS to generate a 100 MHz clock,
which is used for the AXI4-Lite interfaces that allow
controlling FPGA IP cores from the CPU, and also for
other general clocking needs in the FPGA. The Maia
SDR design also does this. The 100 MHz clock is
used in the AXI4-Lite interfaces of Maia SDR and the
axi_ad9361, and also in the Maia SDR IQ recorder
DMA and the Zynq HP port it is connected to. This 100
MHz clock is also used to generate the following three
clocks with an MMCM tile. These clocks are used in the
Maia SDR IP core.

– 62.5 MHz clock. This clock is used to run the
Maia SDR FFT core, spectrometer, and its DMA
and corresponding Zynq HP port. Additional signal
processing functions to be added in the future will
also use this clock. The reason for using this clock
instead of the AD936x interface clock directly is that
this clock has a fixed frequency, while the interface

TABLE I
MAIA SDR FPGA RESOURCE UTILIZATION

LUTs Registers BRAM DSPs
Zynq 7010 17600 35200 60 80
Full design 4421 4767 20.5 8
- axi_ad9361 1410 2190 0 0
- AXI interconnect 520 675 0 0
- Maia SDR IP 2461 1871 20.5 8
- - IQ recorder 68 112 0.5 0
- - Spectrometer 2333 1495 19.5 8
- - - DMA 26 46 0 0
- - - FFT 2196 1368 9.5 6
- - - Integrator 108 80 10 2

clock frequency is variable. This simplifies generat-
ing clocks at twice and three times the frequency,
which are required by the FFT core (in fact, for low
sampling rates the AD936x interface clock frequency
is too low to be used as the input clock for an
MMCM tile). The frequency of this clock is chosen
to be slightly higher than 61.44 MHz, while sup-
porting the required frequency multiplication ratios
in the MMCM.

– 125 MHz clock. This clock is synchronous to the
62.5 MHz clock and has twice its frequency. It
is used in the FFT core and other future signal
processing functions that need to run DSPs at twice
the data clock frequency.

– 187.5 MHz clock. Similarly to the previous clock,
this is used to run DSPs at three times the data clock
frequency.

• 200 MHz clock FCLK1. This clock is used by the
axi_ad9361 IP core to control the delay of the AD936x
interface, using IDELAY and ODELAY primitives.

F. Resource utilization

Table I shows the FPGA resource utilization of the Maia
SDR ADALM Pluto design. The first row shows the total
amount of resources available in the Zynq 7010, and the next
line shows the resources used by the complete Maia SDR
design. The full design is divided into its main components:
the axi_ad9361 IP core, the Maia SDR IP core, and a
Xilinx AXI interconnect that is used to connect the AXI4-
Lite interfaces of the axi_ad9361 and Maia SDR IP cores
to the Zynq GP0 port. Inside the Maia SDR IP, the usage of
its two main modules, the IQ recorder and the spectrometer,
is shown. The spectrometer is broken down into another level,
which lists how the resources are divided between the DMA,
the FFT and the integrator.

From this table, it is clear that there is more than enough
room to add new functionality in Maia SDR, even though the
Zynq 7010 FPGA in the Pluto is relatively small. Another
conclusion is that a custom AD936x interface and AXI in-
terconnect would greatly reduce the utilization of these parts
of the design. Note that the spectrometer DMA, and also the
complete IQ recorder (which includes another DMA) use only
a few dozens of LUTs and registers.



III. ARM CPU APPLICATION: MAIA-HTTPD

The Zynq ARM runs an application called maia-httpd
that controls the FPGA IP core and the AD936x, and provides
an HTTP server that serves the web user interface and gives a
REST API for control. The REST API is used by the web user
interface and can also by used by third-party applications and
scripts. This application is implemented in Rust using axum,
which is a web server framework written in async Rust.

Access to the Maia SDR IP core is done through a UIO
device. This is a mechanism in the Linux kernel that allows
user space applications to mmap() the registers of a hardware
device and to wait for interrupts sent by the device. The
svd2rust tool is used to generate an idiomatic and safe
Rust API to access the registers. This tool generates code for
such an API from an SVD file, which is an XML description
of the registers in an SoC (system-on-chip). The SVD file is
produced directly by the Python Amaranth code that imple-
ments the Maia SDR IP core registers. This automatic code
generation process ensures the consistency between software
and hardware regarding register addresses, sizes, etc.

The control of the AD936x is done through the sysfs
interface of the IIO Linux kernel module for this device.
This allows to control parameters such as the LO frequency,
sampling rate, RF bandwidth and AGC through reads and
writes to files in /sys/bus/iio/devices/.

The REST API uses JSON to format the requests and
responses. The “schema” for these JSON messages is defined
in Rust code, in the maia-json crate, which is shared by
maia-httpd and maia-wasm. This crate uses serde (a
framework for serialization and deserialization in Rust) to
implement translation between JSON and Rust struct’s
according to this schema.

The waterfall data is sent by a WebSocket server. Each
waterfall line (corresponding to one measurement of the
spectrometer) is sent as a WebSocket binary message that
contains 4096 float32’s in little-endian format. This makes
it easy to process the waterfall data in other applications. An
example Python script that displays a real-time spectrum using
Matplotlib is provided with maia-httpd.

Another interesting aspect of maia-httpd is the IQ
recording download function. The IQ data is written to the
DDR by the FPGA, either as packed 12-bit integers (so each
IQ sample occupies 3 bytes), or as 8-bit integers (so each
IQ sample occupies 2 bytes), depending on the recording
mode that was selected. From the user’s point of view, the
recording is downloaded as a SigMF archive, which is a tar
file that contains a JSON metadata file and a binary data file
arranged in a specific way. Since SigMF does not support 12-
bit sampling, 16-bit sampling is used to store recordings done
in 12-bit mode. The raw recording data occupies up to 400
MiB, out of the total 512 MiB of the Pluto DDR, so there is
not enough extra space to format the SigMF archive in RAM.
Therefore, the SigMF archive is formatted on the fly when
the download is done (this includes the tar format and the
conversion from 12-bit to 16-bit if needed).

IV. WEB USER INTERFACE: MAIA-WASM

The user interface of Maia SDR is a web application
called maia-wasm. It is written in Rust and compiled to
WebAssembly. The application connects to the maia-httpd
WebSocket server to fetch waterfall data, renders the waterfall
in an HTML canvas using WebGL2, and provides HTML form
controls to read and write settings (receive frequency, sampling
rate, recording controls, etc.) using the REST API.

A custom render engine is used to render the waterfall.
The waterfall data (in dB units) is written to a texture as it
is received line by line. To do this efficiently, the WebGL2
method texSubImage2D() is used to update only the parts
of the texture that have changed. The texture is mapped on
a rectangle whose height is 3 times larger than the height
that is visible on the screen. The waterfall texture is mapped
1.5 times onto this rectangle, giving the illusion that the top
and the bottom of the texture seamlessly glue together. This
makes it appear that the waterfall is continuously scrolling up
as time advances. What actually happens is that waterfall data
is written to the texture in such a way that when the end is
reached, writing goes back to the beginning of the texture.
Only one third of this rectangle is shown on the screen, with
the freshly written data always at the bottom. This arrangement
of geometry causes the last half of the written waterfall data
to be seamlessly visible on the screen even if the write wraps
around the end of the texture.

The fragment shader for the waterfall maps the waterfall
texture data to a colormap stored in a 1D texture, by using
the texture() shading language function to perform a
lookup. Currently, the Turbo, Viridis and Inferno colormaps
are supported, and it is easy to add new colormaps represented
by an array of values.

The render engine also manages the ticks of the frequency
axis of the waterfall. These are drawn using the LINES
WebGL2 draw mode and displayed or hidden dynamically
according to the zoom level. The labels in the frequency
axis are small pieces of a single texture to which all the
required labels have been previously rendered. The render
engine has a text render function that uses an HTML canvas
(not visible on the screen) and the fillText() method
of the CanvasRenderingContext2D to render all the
required text in the canvas. The canvas bitmap is then copied
to a WebGL2 texture.

The waterfall can be used with a mouse or with a touch-
screen. With a mouse, the waterfall can be zoomed using the
wheel, and scrolled in frequency by clicking and dragging
horizontally. With a touchscreen, zoom is done using two-
finger pinch gestures, and frequency scrolling is done by
dragging horizontally. In either case, if the user attempts to
drag far enough past the left or right edge of the waterfall, the
receive frequency of the AD936x will change. This feature
can be used to scroll quickly through large portions of RF
spectrum.

The maia-wasm waterfall is prepared to be re-usable in
other projects. There have already been some experiments



about using it in FutureSDR [9], and a demo version that uses
waterfall data pre-stored in a JPEG file is available in Maia
SDR’s website1.

Another important part of maia-wasm handles the HTML
user interface. This is composed by HTML input, select
and button elements. The user can read settings such as the
receive frequency and the sample rate in input elements,
write new values in these elements to change the settings, use
select elements to change settings such as the waterfall
colormap, and press button elements to start or stop the IQ
recording.

Most of these HTML user interface elements are tied to
variables in the maia-httpd REST API by maia-wasm
(a few others correspond to settings that are implemented in
the client side, such as changing the waterfall colormap). A
periodic GET request fetches all the values of the REST API
and updates the values displayed by these elements. When
the user changes the value of one of the elements, a PATCH
request is sent to the REST API to modify the value. The code
that implements this has a substantial amount of boilerplate,
especially because REST API requests are done using the
JavaScript fetch API, which is asynchronous. Therefore, the
code often involves converting Rust futures into JavaScript
promises. Extensive use of Rust macros is done to generate
most of the boilerplate code, taking advantage of the fact that
many user interface elements are handled in the same way.

There are some additional interesting features of maia
-wasm which account for the fact that the ADALM Pluto does
not have persistent storage (unless a flash partition is formatted
using JFFS2, which Maia SDR does not do) nor a real-time
clock. The current settings (frequency, sample rate, etc.) are
saved in the web browser local storage. This means that if
the Pluto is rebooted and the same web browser is connected
to it again, then maia-wasm will read the last settings from
the local storage and apply them. One of the values included
in the REST API of maia-httpd is the server time, which
corresponds to the time according to the Linux clock on the
Pluto. If maia-wasm detects that the server time is off by
more than one second compared to the clock of the device in
which maia-wasm runs, then it will send an API request to
update the server time. This is used to keep the Pluto Linux
clock synchronized, which is important because IQ recordings
are timestamped using this clock.

V. LINUX KERNEL MODULE: MAIA-KMOD

Maia SDR uses the Linux kernel module maia-kmod
to access the DMA buffers in DDR from the user space
application maia-httpd. This kernel module implements
the mmap() system call for these buffers and performs cache
invalidation as required.

The Zynq has two different high-throughput ports from
which AXI Managers in the FPGA can access resources of
the SoC such as the DDR. There are four HP ports, which
give non-coherent access to the DDR controller. This means

1https://maia-sdr.org/waterfall-demo/

that accesses through these ports do not go through the L1
and L2 caches used by the ARM CPUs. If the FPGA writes
to the DDR through these ports, the corresponding cache lines
need to be invalidated by the CPU to prevent reading old data.
There is also one ACP port (accelerator coherency port), which
gives coherent access to the DDR. Accesses from this port
go through the SCU (snoop control unit), which gives access
through the L2 cache and invalidates data in the L1 caches
when needed.

Using the ACP port is much simpler from the point of
view of the software, because no cache management is needed.
However, in many use cases it is undesirable to use this port,
because writes through the ACP port can evict cache lines used
by the application that is currently running (especially because
the cache eviction policy in the Zynq is pseudo-random). It
is preferable that the data ends up in the DDR without being
written to the caches. The IQ recorder is a good example. A
large amount of data is written to the DDR, but it will only
be used later on, so there is no point in caching it during the
write.

Another possibility to avoid cache management is to map
the DDR buffers from the CPU as uncached memory. How-
ever, this causes a large performance penalty.

Maia SDR uses the HP ports and, for best performance,
maps the DDR buffers as regular cached memory. Therefore,
maia-kmod must handle the cached invalidation for the
buffers. This is done in the following ways:

• For the IQ recorder, which is a single buffer, cache inval-
idation is done as part of the mmap() implementation.
This matches the usage that maia-hdl does of this
buffer. After a recording has finished, when the data
download is requested by the user, the buffer is mmap()-
ed. It is munmap()-ed when the download finishes.

• For the spectrometer there is a ring of buffers, each
holding a single measurement. The ring is mapped all
the time in maia-hdl through a single mmap() call.
The ioctl() system call is used by maia-hdl to
command the cache invalidation of a single buffer in the
ring, immediately before the buffer is read.

The details of the implementation of cache invalidation are
quite tricky. The Linux kernel has a DMA API [10] that
allows mapping DMA buffers with dma_map_single()
and to perform cache invalidation with dma_sync_single
_for_cpu(). However, this has an important limitation,
which is that the buffers need to be mapped in the kernel
address space. This makes sense in most applications, because
the data will be accessed by the kernel. However, in Maia
SDR the data is accessed by the user space application
maia-httpd. In a 32-bit architecture such as the Zynq
ARM, the kernel typically uses the 3G/1G split, where only
1 GiB of the available virtual address space is mapped by the
kernel. Because the kernel uses virtual memory mappings for
many purposes, this means that in practice it is not possible to
map the 400 MiB buffer used by the IQ recorder in the kernel
virtual address space.



The maia-kmod implementation gets around this limi-
tation by not using the DMA API, and calling the cache
invalidation functions directly. Bypassing the DMA API
means that the kernel infrastructure that abstracts different
cache controllers cannot be used, so low-level functions
need to be called directly. These functions are v7_dma
_inv_range() for the ARMv7 L1 cache (this is an
assembler function in arch/arm/mm/cache-v7.S), and
outer_inv_range() for the L2 cache (this is a C function
in arch/arm/include/asm/outercache.h that calls
the inv_range() function of the L2 cache handler, which in
the case of the Zynq PL310 is the l2c210_inv_range()
function in arch/arm/mm/cache-l2x0.c). These low-
level functions are not exported by the kernel, because in
principle they should not be called from kernel modules. Maia
SDR uses a modified Linux kernel that exports these functions.

It should be mentioned that performing cache invalidation
in this way is not exempt of problems. The L1 ARM cache
is physically indexed and physically tagged, but cache in-
validation is performed line by line using virtual addresses.
Similarly, the L2 cache is physically addressed and physically
tagged, and cache invalidation is done line by line using
physical addresses. This is quite inefficient for invalidating
large buffers, of which only a few or no cache lines will
actually be present in the caches. The alternative would be
to invalidate the complete caches. However, it would be
quite difficult to do this without disturbing Linux’s cache
management system.

VI. CONCLUSIONS

In its present state, Maia SDR provides a firmware image
for the ADALM Pluto with interesting features beyond the
capabilities offered by the default firmware image by Analog
Devices. It also gives a solid foundation for building FPGA
signal processing applications connected to a web user inter-
face, since the plumbing that moves the data from the FPGA
to the web user interface is already taken care of.

In the future, it is planned to implement FPGA modules
to downconvert and decimate signals and perform analog
demodulation in the usual SSB, AM and FM modes. This will
give a user experience similar to a WebSDR. The roadmap
is not limited to this. Decoding of some digital signals and
transmission of analog and digital modulations are candidate
features. The longer term goal would be to have a complete
transceiver that can be used in the field with only the ADALM
Pluto, a smartphone, and perhaps a small power amplifier and
battery.

REFERENCES

[1] Maia SDR, https://maia-sdr.org
[2] B. Hilburn et al., “SigMF: the signal metadata format,” Proceedings of

the GNU Radio Conference, [S.l.], v. 3, n. 1, sep. 2018.
[3] Amaranth, https://github.com/amaranth-lang/amaranth
[4] S. Klabnik and C. Nichols, The Rust programming language. No Starch

Press, 2023.

[5] N. Gallone, G. Goavec-Merou, J.-M Friedt, “Free, opensource Field
Programmable Gate Array (FPGA) development frameworks for radio
frequency communication – Digital communication using GNU Radio”,
European GNU Radio days / Software Defined Radio Academy 2022
tutorials.

[6] K. Shila, “An Amaranth-based Packetizer for the CASPER Toolflow”,
https://blog.kiranshila.com/blog/
casper_amaranth.md

[7] D. Estévez, “Amaranth in Practice: a case study with Maia SDR”, Open
Research Institute Inner Circle newsletter, April 2023,
https://mailchi.mp/db8a4ece023c/
31zpq7fkuj-15084741

[8] S. He, M. Torkelson, “A new approach to pipeline FFT processor”,
Proceedings of IPPS ’96, 1996.

[9] B. Blössl, “FutureSDR: An async SDR runtime for heterogeneous
architectures”, Software Defined Radio Academy 2022.

[10] D. S. Miller, R. Henderson, J. Jelinek, “Dynamic DMA mapping
guide”,
https://docs.kernel.org/core-api/
dma-api-howto.html


