gr-satellites and related experiments Dr. Daniel Estévez (EA4GPZ/M0HXM)

AMSAT-UK Colloquium / RSGB Convention 2022

2) Deep space satellites

3 QO-100 multimedia beacon

GNU Radio

- GNU Radio is an open source framework to do DSP for radio.
- It comes with:
 - A GUI application called "GNU Radio companion" where systems can be implemented by dragging and dropping blocks onto a canvas, making a "flowgraph".
 - A rich library of processing blocks accessible both through GNU Radio companion, and C++ and Python APIs.
 - A "runtime", that moves data between these blocks.
- In the GNU Radio ecosystem there are out-of-tree modules, which implement new blocks that don't fit into or exist in the in-tree library.
- There are also full applications that use GNU Radio for their DSP (e.g., GQRX and QRadioLink).

4/26

- gr-satellites is a GNU Radio out-of-tree module with a collection of telemetry decoders for Amateur satellites.
- It supports most satellites that transmit on the 145 and 435 MHz Amateur bands: 53 different protocols, and 282 satellites.
- The project started in 2015 with the motivation to create decoders for satellites for which no decoder was publicly available.
- ITU Radio Regulations: "Transmissions between amateur stations [...] shall not be encoded for the purpose of obscuring their meaning" ⇒ "open access" for transmissions on amateur radio bands.
- Other goals: education, support to new satellite teams (universities...).
- It can work with recordings and with real-time data from an SDR or conventional radio.

• Source code available at

https://github.com/daniestevez/gr-satellites.

- Radioconda: easy installer for GNU Radio and many related packages for Windows, Mac and Linux.
- Ubuntu PPA for the latest Ubuntu release.
- Also packaged by other Linux distributions.

```
$ gr_satellites FUNcube-1 --wavfile satellite-recordings/ao73.wav
-> Packet from 1k2 BPSK downlink
Frame type WO10
  ______
Realtime telemetry:
Container:
   eps = Container:
       photovoltage = ListContainer:
       photocurrent = 0
       batteryvoltage = 8140
```

• • •

Low level blocks

Dr. Daniel Estévez (EA4GPZ / M0HXM)

10/26

YAML configuration

```
name: AO-73
alternative names:
  - FUNcube-1
norad: 39444
telemetry_servers:
  - FUNcube
data:
  &tlm Telemetry:
    telemetry: funcube
transmitters:
  1k2 BPSK downlink:
    frequency: 145.935e+6
    modulation: DBPSK
    baudrate: 1200
    framing: AO-40 FEC
    data:
    - *tlm
```


3 QO-100 multimedia beacon

Deep space satellite decoding

- I've been interested in decoding deep space satellites since early 2020.
- I've been building GNU Radio decoders for most missions launched since then (see http://destevez.net).
- Not officially part of gr-satellites, but re-uses many blocks.
- Amateur DSN:
 - Traditionally, detection of CW carrier.
 - Decoding becoming more common. More missions means more opportunities, and now there are more tools.
- TLEs are no good outside Earth orbit. Other tools are needed: NASA Horizons, GMAT.
- This gives us practical experience for future Amateur payloads and missions outside Earth orbit.
- Huge help by getting observing time on the Allen Telescope Array. Thanks to SETI Institute, BSRC and GNU Radio!

Horizons System

About	App	Manual	Tutorial	Time Spans	News	
Horizo	ns W	eb App	lication			

Save/Load Settings... 1 Ephemeris Type: Observer Table 2 Edit 7arget Body: Lucy (spacecraft) 3 Edit Observer Location: London England (0°07′00.1″W, 51°30′00.0″N) 4 Edit Time Specification: Start=2022-10-08 UT , Stop=2022-10-09, Step=15 (minutes) 5 Edit Table Settings: custom

After specifying settings above (items 1 to 5), generate an ephemeris by pressing the "Generate Ephemeris" button below. If you plan can be viewed by using this link.

Generate Ephemeris

Ho	ome						About O	rbits & phemerides -	Planets Pla • Sa	anetary utellites -	Small Bodies	Tools	Extras
Но	ome / Tools / Horizons System												
10	Rel. lght bnd GM: 1.3271E Atmos refraction: NO (AIRI RA format : HMS Time format : CAL RTS-only print : NO EOP file : eop.2206 EOP coverage : DATA-BAS	 +11, 3.9860E+05 km^3/s LESS) 923.0221216 SED 1962-JAN-20 TO 202	2-SEP-23. PREDICTS-> 202	2-DEC-15									
	Units conversion: 1 au= 14	49597870.700 km, c= 29	9792.458 km/s, 1 day= 86	400.0 s									
	Table cut-offs 1: Elevation	on (-90.0deg=NO),A1rm	ass (>38.000=NO), Daylig	ht (NO)									
	Table cut-offs 3: RA/DEC a	angular rate (0.0	=NO),LOCAL HOUT Angle(=NO)	0.0=NO)									
	***********************	********	*****	************	*****************	*********		**********			*********	********	****
	Date_(UT)_HR:MN R.A	A(ICRF)DEC	Azi(a-app)Elev	APmag S-br	t delta	deldot	S-0-T	/r S-T-4	0 Sky_moti	lon Sky_m	ot_PA Rel	Vel-ANG	Lun_
	*********************	******************	*********************	************	*****************	*********		**********	*********	********	*********	*******	*****
	\$\$SOE												
	2022-Oct-08 00:00 m 13	12 03.39 -00 27 14.7	357.453379 -45.040590	n.a. n.a	4.0007407707E+00	-5.4780890	4.8072	/T 175.000	0.9691:	030 92.2	02844 -81 57900 -91	6.72052	
	2022-0ct-00 00:15 m 13	12 04.50 -00 27 15.5	7 008525 -40.042913	n.a. n.a	3 0058525145E±06	-5.4900801	4.0011	/T 175.007	4 0 9702	104 92.0	57690 -0	6 74900	
	2022-0ct-08 00:30 m 13	12 05.54 -00 27 10.0	13 206071 -44 394257	na na	3 9908803814F±06	-5.5336555	4.7890	/T 175.079	a 96513	12 93.0	83335 -8	6 78092	
	2022-0ct-08 01:00 m 13	12 07 48 -06 27 17 8	18 325367 -43 759854	na na	3 9858917495E±06	-5.5518791	4.7829	/T 175.086	0.95623	34 93 9	20360 -8	6 82500	
	2022-0ct-08 01:15 m 13	12 08 43 -06 27 18 8	23 328431 -42 927799	na na	3 9898868371E+06	-5.5698204	4.7767	/T 175.000	7 0 94356	66 94 3	78635 -8	6 88092	
	2022-0ct-08 01:30 m 13	12 09 37 -06 27 20 0	28.193215 -41.911656	n.a. n.a	3.9758659337E+06	-5.5874009	4.7705	/T 175.099	3 0.92721	73 94.8	62617 -8	6.94834	
	2022-Oct-08 01:45 m 13	12 10.29 -06 27 21.2	32.904008 -40.723291	n.a. n.a	3.9708293987E+06	-5.6045440	4.7643	/T 175.105	0.90724	42 95.3	77503 -8	7.02683	
	2022-Oct-08 02:00 m 13	12 11.19 -06 27 22.6	37,451275 - 39,376287	n.a. n.a	3,9657776596E+06	-5.6211748	4.7579	/T 175.112	5 0.88373	329 95.9	29458 -8	7.11597	
	2022-Oct-08 02:15 m 13	12 12.06 -06 27 24.0	41.831081 - 37.884621	n.a. n.a	3.9607112104E+06	-5.6372206	4.7515	/T 175.119	4 0.85678	364 96.5	25909 -8	7.21527	
	2022-Oct-08 02:30 m 13	12 12.90 -06 27 25.5	46.044253 - 36.262236	n.a. n.a	3.9556306094E+06	-5.6526110	4.7449	/T 175.126	0.82652	252 97.1	75948 -8	7.32422	
	2022-Oct-08 02:45 m 13	12 13.71 -06 27 27.1	50.095450 -34.522712	n.a. n.a	. 3.9505364771E+06	-5.6672788	4.7382	/T 175.133	3 0.79308	378 97.8	90875 -8	7.44225	
	2022-Oct-08 03:00 m 13	12 14,48 -06 27 28,8	53,992243 -32,679043	n.a. n.a	. 3.9454294930E+06	-5.6811595	4.7314	/T 175.140	5 0.75663	308 98.6	84968 -8	7.56878	
	2022-Oct-08 03:15 m 13	12 15.21 -06 27 30.5	57,744290 -30,743499	n.a. n.a	. 3.9403103932E+06	-5.6941921	4.7244	/T 175.147	8 0.71733	302 99.5	76574 -8	7.70317	
	2022-Oct-08 03:30 m 13	12 15.90 -06 27 32.4	61.362638 -28.727558	n.a. n.a	. 3.9351799670E+06	-5.7063194	4.7172	/T 175.155	3 0.67538	34 100.	58970 -8	7.84475	
	2022-Oct-08 03:45 m 13	12 16.55 -06 27 34.3	64.859163 -26.641894	n.a. n.a	. 3.9300390538E+06	-5.7174878	4.7099	/T 175.163	0.6310	L09 101.	75638 -8	7.99278	
	2022-Oct-08 04:00 m 13	12 17.14 -06 27 36.2	68.246150 -24.496405	n.a. n.a	. 3.9248885390E+06	-5.7276479	4.7024	/T 175.170	9 0.58446	518 103.	12037 -8	8.14647	
	2022-Oct-08 04:15 13	12 17.69 -06 27 38.3	71.535980 -22.300263	n.a. n.a	. 3.9197293509E+06	-5.7367546	4.6947	/T 175.179	0.53602	207 104.	74285 -8	8.30492	
	2022-Oct-08 04:30 A 13	12 18.19 -06 27 40.3	74.740920 -20.061983	n.a. n.a	. 3.9145624559E+06	-5.7447674	4.6868	/T 175.187	0.48602	213 106.	71185 -8	8.46712	
	2022-Oct-08 04:45 A 13	12 18.63 -06 27 42.5	77.872990 -17.789503	n.a. n.a	. 3.9093888554E+06	-5.7516503	4.6787	/T 175.195	8 0.43486	589 109.	15807 -8	8.63184	

15/26

Dr. Daniel Estévez (EA4GPZ / M0HXM)

gr-satellites and related experiments

Doppler correction block

- New block added to gr-satellites in July.
- Can correct Doppler using data from a text file (produced with HORIZONS, GMAT, or anything else).

- Was tested with the Allen Telescope Array, by detecting Voyager-1 with a single 6.1 metre dish.
- It seems possible to detect Voyager-1 even with a smaller dish by integrating several hours worth of data!

2 Deep space satellites

- New digital beacon on the QO-100 NB transponder since May.
- Uses a 2.4kbaud 8APSK modem (~6.2kbps) by Kurt Moraw DJ0ABR.
- Added a decoder to gr-satellites with some custom blocks.
- The multimedia beacon transmits an HTML webpage and some real-time data (waterfall, DX cluster, CW skimmer) that is sent to the webpage using websockets. Implemented a Python script for that.
- Some help from Florian Wolters DF2ET testing and putting all together with an RTL-SDR and GQRX.
- https://github.com/daniestevez/gr-satellites/tree/main/ examples/qo100-multimedia-beacon

gr-satellites QO-100 multimedia beacon decoder + GQRX + RTL-SDR

- GNU Radio and gr-satellites can be used to measure the phase of the BPSK and 8APSK QO-100 beacons.
- The phase difference between the beacons gives the time of flight (distance) between the transmitter in Bochum, the satellite, and the receiver (plus some unknown constant offset).
- In practice, we can use the Doppler difference of the beacons to do orbit determination.
- Requires calculating all the frequency errors due to the SDR. Done examples for the LimeSDR and Pluto.

Measurement of the QO-100 beacon phases

Doppler of one beacon (has spacecraft LO effects)

Doppler difference of two beacons (no spacecraft LO effects!)

Orbit determination

- Having only one stations doesn't give very good results.
- It is difficult to tell if the satellite is going "up" or south.
- Interested people, do get in touch!