gr-satellites

A collection of GNU Radio decoders for Amateur satellites

Dr. Daniel Estévez

18 September 2019
GNU Radio Conference 2019, Huntsville (AL)

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019

About the speaker

@ PhD in Mathematics

@ Day job: in GMV (Madrid) as a GNSS engineer, developing GNSS receivers and
simulators, especially for Galileo

@ Independent researcher in radio communications, radio science, space systems and
other topics

@ Amateur radio operator: EA4GPZ (Spanish callsign), MOHXM (UK callsign)
@ Blog http://destevez.net
o Twitter @eadgpz

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 2/21

http://destevez.net

0 Introduction
@ A brief look inside

e Roadmap

e Demo time!

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 3/21

0 Introduction

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 4/21

gr-satellites

@ A GNU Radio out-of-tree module with a collection of telemetry decoders for Amateur
satellites

@ Input: IQ RF samples (from SDR, conventional radio or recording)
@ Output: packets in hex or parsed telemetry values

@ Currently supports more than 80 different satellites

@ More than 70 custom blocks, many of them implemented in Python

@ Project goal: providing an open-source solution for decoding every satellite that
transmits on Amateur bands

@ Essentially a one man’s project, but I'm eager to collaborate with other people

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019

Origins of the project

@ Started in 2015 as experiments to decode some Amateur satellites which nobody
had decoded before (other than the satellite owners). These often involved some
reverse-engineering.

@ Motivations:

e Learning and fun

e ITU Radio Regulations state that Amateur transmissions “shall not be encoded for the
purpose of obscuring their meaning”. This means that all Amateur transmissions should
have a readily available decoder or public specifications.

@ People started to find these experiments useful, so the idea to collect them under a
comprehensive collection gave rise to gr-satellites

@ Since then, | have been adding support for newer Amateur satellites as they get
launched

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 6/21

Usual development workflow

@ A new satellite gets launched
@ Amateurs do some recordings of the signal

@ | work with the recordings and documentation available online to see what
protocols/specifications are used

@ Usually the documentation is incomplete or inexistent: do reverse-engineering or try
to get in touch with the satellite team to ask questions

@ If all goes well, eventually we figure out all the specifications
@ Write a decoder, put up a blog post

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 7/21

A few words about documentation

@ Currently there is an ongoing discussion in the Amateur community about the
importance of publishing documentation and specifications about the signals used by
Amateur satellites

@ We are trying to get things more strict: complete specifications must be publicly
available at some point before launch

@ If you are designing a satellite that will use Amateur radio spectrum, please do:

o Get in contact with the Amateur community. We are here to help
e Write and publish good and complete specifications for your protocols

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 8/21

@ A brief look inside

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 9/21

Structure of the project

@ Each satellite has its own flowgraph
@ Basic information about each flowgraph is included in the README

@ The flowgraph contains the telemetry decoder (from IQ to PDUs) and telemetry
parsers, image decoders and telemetry submitters as appropriate

@ No GUI
@ Some configuration parameters. Designed to run as a . py script from the terminal.
@ Output gets printed to the terminal, or passed on via sockets or files

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 10/21

Input format

@ Supporting different input formats can be cumbersome
@ | settled on real time UDP input with a (real) f1oat32 signal at 48ksps.
@ Reasons:
e Many people have 48ksps audio recordings from conventional radios or SDRs
e GQRX can stream audio with UDP using this format
@ Depending on the modulation, something different is expected:
o FM/FSK. FM demodulated audio
o Narrow bandwidth linear (e.g. 1k2 BPSK). Conventional SSB audio (0-3kHz) with signal
centred at 1.5kHz.
o Wide bandwidth linear (e.g. 9k6 BPSK). Wide SSB audio (0-24kHz) with signal centred
at 12kHz.
@ Ways to feed input:
e GQRX
o gr-frontends: UDP streamers from WAV recordings, audio source, and some SDR
hardware
o Build your own using netcat

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 11/21

Optlons Parameter
:_':;I:f‘as“m docager ID:ip 1D: port 1D: callsign ID: recstart TE Ec(m\::::ule
g Label: UDP listen IP Label: UDP port Label: your callsign Label: start of D HH:MM:S5) . o
Author: Daniel Estevez Value: : Value: 7.355k Valu Value Value: 000U 11OMIO10101
LIEm I EhED . (et Type: String Type: Int Type: String Type: String
Generate Options: No GUI Variable
Run Options: Run to Completion T ey
Parameter Parameter o
Signal Source 1D: latitude 1D: longitude
Label: latitude...or -00.000) Labet: longitud..or -00.000)

Sample Rate: 48k

Waveform: Cosine Valu Value: 0
[Frequency: -3.6k Type: Float Type: Float
Amplitude: 1

Low Pass Filter
UDP Source Py

.
1P Address: : Gain: 1
Part: 7.355k (] Sample Rate: 48k
Payload Size: 1472k Float To Complex Empl EnT D 1 ceen Freq: 2.6k

Null Pkt is EOF: False Transition Width: 1
Window: Hamming
Note Beta: 6.76

Telemetry Forwarder
URL: https:/fd...i/telemetry/
NORAD ID; 42.731k
Receiver callsign:
Latitude (Nis +, S is-): 0
Longitude (W is -, E Is +): 0
Start of recording UTC (blank for realtime):

Sync and create packed PDU NanoCom U482C FEC decode

Packet length (bytes): 258 Verbose: o
Synewerd: 110000...1001010101 - | viterbi: Auto
Scrambler: Auto

©Omega Relative Limit: 5m Syncword threshold: 4
Freq Errol

Auto

Print ti tal
sl L [| Message Debug

- g Format: %Y-%m-%d %H:%M:%5
Packet counter: Yes

Huntsville, September 2019

Daniel Estévez

A very useful block: Sync and create (packed) PDU

@ Most satellites transmit packets of a fixed size or with a (small) MTU

@ Packets are marked by a syncword at the beginning

@ Sync and create PDU extracts a PDU of fixed size whenever the syncword is
detected

@ “Overlapping packets” are allowed. Useful for shorter packets or false syncword
detections

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019

Sync and created packed PDU

Correlate Access Code - Tag
Access Code: D0D11...00011101
Threshold: 4

Tag Name: syncword

Fixed Length Packet Tagger
Syncword tag: syncword
Packet length tag: packet len
Packet length: 0

Unpacked to Packed
Bits per Chunk: 1
Endianness: MSB

:::els“'r:‘m Tagged Stream Multiply Length Tag
. Length tag names: packet_len

l Length Scalar: 125m

Tagged Stream to PDU Pad Sink
Length tag name: packet len Label: out

@ Fixed Length Packet Tagger is a custom Python block. It outputs a packet and
packet_len tag whenever it sees a syncword tag.

@ Maybe | should be using Protocol Parser for this?

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 14/21

Working with KISS files to store packets

@ The KISS protocol was originally designed to interface a TNC (packet radio modem)
and a host

@ It is a way of marking frame boundaries and sending control commands
@ These days is often used to delimit frame boundaries in files, TCP streams, etc.

@ Very simple protocol: one frame-delimiter byte to mark frame boundaries, one escape
byte to escape the frame-delimiter byte or the escape byte if they occur in the data

File Source File Sink

File: KISS to PDU I I I - PDU to Tagged Stream File:
Repeat: Yes Expect control byte: Yes Length tag name: packet_len Unbuffered: Off

Add begin tag: () Append file: Overwrite

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 15/21

Custom HDLC Framer and Deframer

HDLC Deframer

d] Minength; 52
U - Max length: 500

Note
Note: GNU Radio

Note HOLC Framer HDLC Deframer
Note: gr-satellites [[| preambie bytes: 50] Check FCS: True
bytes: 7

Maximum frame length (bytes): 10k

@ Implemented in Python

@ They do not have NRZ-I built in. Sometimes HDLC is used without NRZ-1 (usually a
bad idea).

@ Framer can add a preamble and postamble of arbitrary length. Long preamble
important for clock recovery in the receiver.

@ Deframer can skip CRC-16 check. Useful for debugging.

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 16/21

Some other useful components

@ Decoders for GOMspace radios U482C and AX100. Many satellites use these.

@ Texas Instruments CC11xx and SiLabs Si4463 decoders.
@ Several FEC decoders:
o CCSDS Viterbi
@ CCSDS or general Reed Solomon (uses Phil Karn’s libfec)
o Reed Solomon decoder with rscode (perhaps redundant)
o BCH decoder
o Golay decoder
@ Several descramblers:
o G3RUH asynchronous
@ CCSDS synchronous
o |ESS-308 asynchronous
@ PN9 synchronous (Tl and SiLabs variants)

@ Several CRC checkers

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019

e Roadmap

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 18/ 21

Latest developments

@ June. Contract with SatRevolution to adapt gr-satellites to decode their Swiatowid
and KRAKsat satellites

@ July—September. ESA Summer of Code in Space: Athanasios Theocharis (Univ. of
Thessaloniki) adding blocks for the CCSDS Space Packet, TM Space Data Link and
TC Space Data Link protocols

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 19/21

On the roadmap

@ Port to GNU Radio 3.8 and Python 3
@ Rearchitecture:
o More modularity in the decoders: easier to add a satellite, easier to change some
component in all applicable satellites
o Flexibility in selecting the outputs: selecting different kinds of outputs, ability to output
different things to files
Flexibility in selecting the inputs: UDP 1Q realtime input, WAV file at faster speed
Perhaps optional GUI elements
o What other features would be useful?
@ Including FSK demodulators by David Rowe
@ Adding tests. End-to-end tests with sample recordings from
satellite-recordings.
@ Not yet 100% sure on how to go about these, so comments are welcome
@ Remember that gr-satellites is my largest project, but it is also a kind of “side project”.
It only gets perhaps 10% of my time. Remaining 90% goes to other varied smaller
projects or experiments.

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 20/21

e Demo time!

Dr. Daniel Estévez gr-satellites GRCon19, Huntsville, September 2019 21/21

	Introduction
	A brief look inside
	Roadmap
	Demo time!

