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Preface

It is known that the theory of linear operators on a Hilbert space is intimately related with
the complex analysis. In this work, we will expose the classical Sz.-Nagy–Foiaş theory and its
relations with the theory of Hardy Hp spaces of the disk. We will also treat commutative tuples
of operators (selfadjoint or non-selfadjoint) and how they can be related to the function theory
on complex algebraic curves.
This work is divided in four chapters, which are devoted to the following four topics respectively:

the Sz.-Nagy–Foiaş theory of contractions, the theory of dilations of several operators, the Livŝic-
Vinnikov theory of commuting non-selfadjoint operators, and the theory of separating structures.
The first chapter is an introduction to the Sz.-Nagy–Foiaş theory of contractions on a Hilbert

space. From a certain point of view, it is based on the spectral theory for isometries. Given an
isometry, the Kolmogorov-von Neumann-Wold decomposition theorem states that it is a direct
sum of a unitary operator and a unilateral shift. The unitary operator is well understood, via the
spectral theory for normal operators, and the unilateral shift can be realized as the operator Mz

of multiplication by the independent variable z in some Hardy space H2(U ) of U -valued analytic
functions on the disk, where U is a suitable Hilbert space.
Since isometries can be well understood using analytic function theory, the main idea of the Sz.-

Nagy–Foiaş theory is to represent an arbitrary contraction T (i.e., an operator with ‖T‖ ≤ 1) on a
Hilbert space H as a compression of an isometry V on a larger Hilbert space K ⊃ H. This means
that T = PHV |H, where PH is the orthogonal projection of onto H. Hence, we can think of T as
being a “piece” of V , and we can study the operator T by studying the larger operator V . Note
that T must be a contraction if it is going to be a compression of some isometry. However, this is
no restriction, because any operator can be assumed to be a contraction after multiplication by a
suitable scalar. The dual concept to the compression is that of the dilation. Given an operator T
on a Hilbert space H, we say that an operator V acting on a Hilbert space K ⊃ H is its dilation
if Tn = PHV

n|H for all n ≥ 0. An equivalent definition of the dilation is to require that V has
the structure

V =

∗ ∗ ∗
0 T ∗
0 0 ∗


with respect to some decomposition K = H1 ⊕H ⊕H2. This condition is stronger than that of
T being a compression of V , because we have included all the powers of T and V . However, this
is convenient to develop the theory.
The Sz.-Nagy–Foiaş theory shows that every contraction T can be dilated to a suitable isometry

V . Then, it uses the spectral theory of isometries to produce a model for T using analytic
functions. The model has a simpler form when T ∗n → 0 strongly as n→∞. It turns out that in
this case T can be realized as a compression of the operator Mz of multiplication by z in H2(U )
to a coinvariant subspace H2(U )	ΘTH

2(Y ). Here, ΘT is an inner function, which is a bounded
analytic function on the disk whose values are linear operators taking Y into U , and whose
boundary values are isometric a.e. (this generalizes the scalar-valued inner functions in H∞(D)).
The function ΘT is called the characteristic function of T and contains all the information about
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the operator T . In the general case, the model space is more complicated, but it also involves the
characteristic function ΘT , which in this case is no longer inner.
Although it is customary to formulate this theory for contractions T , a parallel theory exists

for maximal dissipative operators A. These are (possibly unbounded) operators such that ImA =
(A−A∗)/2i ≥ 0. One can pass from dissipative operators to contractions by means of the Cayley
transform T = (A− iI)(A+ iI)−1, which is constructed from the fractional transformation taking
the upper half-plane onto the disk. The space U in the analytic model of the operator A will be
finite-dimensional if and only if the condition rank ImA <∞ holds.
Some of the main achievements of the Sz.-Nagy–Foiaş theory for contractions are the following:

• A functional calculus for a contraction T can be defined for a wide class H∞T of scalar-valued
bounded analytic functions on the disk. For instance, in the case when T has no unitary
part, H∞T is the whole H∞(D) space.

• For contractions T such that there exists a non-zero ϕ ∈ H∞T such that ϕ(T ) = 0, a minimal
function mT ∈ H∞T is defined. This minimal function plays a similar role to the minimal
polynomial in linear algebra.

• There is a relation between the invariant subspaces of the contraction T and a special kind
of factorizations of its characteristic function ΘT , the so called regular factorizations.

Indeed, the Sz.-Nagy–Foiaş theory is one of the most informative spectral theories, apart from
the spectral theory for normal operators.
Another important application of the Sz.-Nagy–Foiaş theory is the Commutant Lifting Theo-

rem. Given a contraction T , an operator A commuting with T , and V an isometric dilation of T ,
this theorem constructs an operator B which is a lifting (a particular kind of dilation) of A and
commutes with V . This allows us to represent A in the functional model of T and to completely
describe the commutant of T .
The Commutant Lifting Theorem has also many applications to interpolation problems. For

instance, it can be used to solve the Nevanlinna-Pick interpolation problem and the Caratheodory
interpolation problem, among many others. The Caratheodory problem is related to geophysics,
because it can be understood in terms of a seismic wave travelling through a layered medium.
For a treatment of these topics, we refer to the monograph [FF90].
A natural generalization of this theory is its generalization to commutative tuples of contractions

(T1, . . . , Tn). The second chapter of this work is devoted to this topic. Here, we try to find a
dilation of the tuple to a commutative tuple of isometries (V1, . . . , Vn). For a pair of contractions,
Andô’s theorem shows that the dilation always exists. However, when n ≥ 3, the dilation may or
may not exist. There are several counterexamples in which the dilation does not exist, but the
reasons behind the existence or non-existence of the dilation are not very well understood.
There is a relation between the existence of the dilation and the so called von Neumann’s

inequality. There are two versions of the inequality: the scalar-valued and the matrix-valued.
The inequality for a single contraction T is

‖p(T )‖ ≤ sup
z∈D
‖p(z)‖, ∀p.

Here, p is either a scalar-valued polynomial or a matrix-valued polynomial, depending on which
version of the inequality we are considering. By a matrix-valued polynomial p(z) = [pjk(z)]jk we
mean a square matrix whose entries are scalar-valued polynomials pjk. Then, p(T ) is the operator
defined by the block operator matrix [pjk(T )]jk. Both versions of the von Neumann inequality
hold for every contraction T , and this can be easily proved by using the Sz.-Nagy–Foiaş theory.
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One can also consider the following generalization of this inequality for a tuple of commuting
contractions (T1, . . . , Tn):

‖p(T1, . . . , Tn)‖ ≤ sup
z1,...,zn∈D

‖p(z1, . . . , zn)‖, ∀p,

where p is either a polynomial in n variables, or a matrix-valued polynomial in n-variables,
depending on whether we want to consider the scalar-valued inequality or the matrix-valued
inequality. However, this equality does not hold for every tuple of commuting contractions. It
turns out that the existence of the dilation implies the scalar-valued version and that the matrix-
valued version is equivalent to the existence of the dilation.
An important result of Agler [Agl90] gives a characterization of those polynomials p in n

variables (either scalar valued or matrix valued) for which von Neumann’s inequality holds for
every tuple of commuting contractions (T1, . . . , Td). We denote by H∞(Dn, G1, G2) the class
of functions analytic and bounded on the polydisk Dn, and which take values in B(G1, G2),
where G1, G2 are Hilbert spaces (here, B(G1, G2) denotes the space of bounded linear operators
mapping G1 into G2). By definition, a function f ∈ H∞(Dn, G1, G2) belongs to the Schur-Agler
class SAn(G1, G2) if there exist positive sesquianalytic B(G2)-valued kernels Kj(z, w) on Dn, for
j = 1, . . . , n, such that

IG2 − f(z)f(w)∗ =

n∑
j=1

(1− zjwj)Kj(z, w). (∗)

Here, a positive sesquianalytic B(G2)-valued kernel K(z, w) is, by definition, a function which
admits a factorization K(z, w) = H(z)H(w)∗, with H an analytic function on Dn which takes
values on B(L,G2), where L is an auxiliary Hilbert space.
A polynomial p in n variables whose values are s×smatrices belongs to the classH∞(Dn,Cs,Cs).

The result of Agler is that the von Neumann inequality for a fixed p holds for every tuple
of commuting contractions (T1, . . . , Tn) if and only if p/‖p‖∞ belongs to the Schur-Agler class
SAn(Cs,Cs).
Moreover, if f ∈ H∞(Dn, G1, G2), the operator f(T1, . . . , Tn) can be defined for a tuple of

commuting strict contractions (T1, . . . , Tn) by using the power series of f . Therefore, it makes
sense to ask when the von Neumann inequality for a fixed f holds for an arbitrary tuple of
commuting strict contractions (T1, . . . , Tn). Once again, it holds if and only if f/‖f‖∞ belongs
to the corresponding Schur-Agler class.
In the recent paper [GKVVW09], Grinshpan, Kaliuzhnyi-Verbovetskyi, Vinnikov and Woerde-

man construct, for an arbitrary f ∈ H∞(Dn, G1, G2), a decomposition of IG2 − f(z)f(w)∗ which
is somewhat related to (∗). This allows them to prove that if a tuple (T1, . . . , Tn) satisfies cer-
tain inequalities, then it satisfies the matrix-valued von Neumann’s inequality. The inequalities
required are similar to those involved in the theory of regular dilations (see (2.12) in Chapter 2).
A different approach to the theory of tuples of commuting operators is the Livšic-Vinnikov

theory, which we briefly expose in the third chapter. The general setting of this theory is that
of commuting non-selfadjoint operators. This is a tuple of commuting operators (A1, . . . , An)
such that rank ImAj <∞, for j = 1, . . . , n. The theory embeds this tuples into some structures,
called colligations and vessels, which allow us to study the operators in terms of auxiliary matrices
acting on a finite-dimensional space.
An algebraic variety in Cn called the discriminant variety is associated with each vessel. This

gives a connection between operator theory and algebraic geometry. When the vessel consists of
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only two operators A1, A2, the discriminant variety is an algebraic curve in C2, and is called the
discriminant curve. It is a real algebraic curve having a determinantal representation.
By means of the procedure of desingularization or blow-up, we can consider the discriminant

curve as a compact Riemann surface. We say that a component of this Riemann surface is
separated if when we remove from it the real points of the curve, we obtain a disconnected
surface. It turns out that this disconnected surface has precisely two connected components,
which we call its “halves”. We say that the whole curve is separated if all of its components are
separated. In this case, we can define one of its halves by picking out one of the two halves from
each component (and the other half is the union of all the halves of the components that we did
not pick).
In some cases, the discriminant curve of a vessel is separated. For instance, it follows from the

work in [SV05] that this happens if a vessel is strict and r(A1, A2) is defined and dissipative for
some rational function r. When the discriminant curve is separated, its halves play an analogous
role to the disk in the case of the theory of a single operator. Another important property of
the discriminant curve is the generalized Cayley-Hamilton theorem. If ∆ is the polynomial which
defines the discriminant curve, then ∆(A1, A2) = 0. The classical Cayley-Hamilton theorem can
be obtained as a direct consequence of this.
The Livšic-Vinnikov theory is also related to the systems theory and control theory. Indeed,

vessels have an interpretation as a control system, and many of the concepts of the theory have a
more natural explanation in terms of this system. There is also some relation between vessels and
quantum physics, because there seems to be an interesting interpretation of a quantum particle
in terms of vessels. A treatment of this can be found in [LKMV95, Section 4.6] or in the paper
[LA89].
One can think of the Sz.-Nagy–Foiaş theory as having two parts. The first one is the spectral

theory of isometries, which have an analytic model consisting of a Hardy space on the disk. The
second part is the relation between contractions and isometries: one can pass back and forth
between them using compressions and dilations. This allows one to construct an analytic model
for contractions using the Hardy space of the disk.
When passing from a single operator to a tuple of commuting operators, the key idea of the

Livšic-Vinnikov theory is to use a complex algebraic curve (equivalently, a Riemann surface)
instead of the complex plane. Vessels can be seen as the analogue of contractions, but there is no
analogue for the spectral theory of isometries.
The fourth chapter of this work is an attempt to build this analogue. It is the original part

of this work and it will be the starting point for the PhD thesis of the author. This part is a
development of some previously unpublished ideas of Vinnikov and Yakubovich. We consider a
construction called operator pool, which allows one to assign an algebraic curve in C2 to a pair of
selfadjoint operators A1, A2 in a similar way to the Livšic-Vinnikov theory. The main construction
of this chapter will be that of a separating structure. This is a pair of selfadjoint operators A1, A2

on some Hilbert space K, together with a decomposition K = H− ⊕ H+ with the additional
property that this decomposition “almost reduces” the operators A1, A2. This means that the
operators PH−AjPH+ , j = 1, 2 have finite rank. There is a canonical way to produce a pool from
a separating structure, so that we can assign an algebraic curve to it. In many case, this algebraic
curve is separated. Its two halves can be used to model, in some sense, the two spaces H− and
H+. Hence, we should be able to construct an analytic model of the separating structure by using
Hardy spaces on its halves.
We also give the definition and first facts about a generalized notion of compression, which

allows us to obtain a vessel by compressing a separating structure. We also hope to be able to
define a dual notion of dilation of a vessel to a separating structure, so that we can pass back and

vi



Preface

forth between vessels and separating structures.
The theory of separating structures can be seen as a generalization of the theory of subnor-

mal operators of finite type developed by Yakubovich in [Yak98a, Yak98b]. There, an analytic
model for a subnormal operator is constructed using Hardy spaces on the halves of a separated
algebraic curve. A subnormal operator S of finite type generates a separating structure, and
the construction of the algebraic curve of this separating structure is equivalent to that done
in [Yak98a,Yak98b] for the subnormal operator. However, separating structures are much more
general. For instance, any linear combination αS + βS∗ also generates a separating structure.
Therefore, many new phenomena appear when considering separting structures.
One of the motivations behind the theory of separating structures is to try to shed some light

on the existence and non-existence of the dilation of a tuple of operators. A future goal would be
to obtain an analogue of Andô’s theorem in the context of this theory and to use the theory to
obtain more information about the dilation.
Let us mention some recent papers related to this work. Agler, Knese and McCarthy consider

in [AKM12] algebraic pairs of isometries (V1, V2), which are those satisfying q(V1, V2) = 0 for
some polynomial q. They show that there is a minimal polynomial q satifying this relation and
that this minimal q is inner-toral. This means that its zero set Zq, which is an algebraic curve, is
contained in D2∪T2∪(C\D)2 (such an algebraic curve is called a distinguished variety, because it
exits the bidisk D2 only at the distinguished boundary T2 ⊂ ∂D2). They prove that under certain
conditions, the pair (V1, V2) can be realized as multiplication by the coordinates functions on
some Hardy space on the distinguished variety Zq. Jury, Knese and McCullough give in [JKM12]
an analogue of the Nevanlinna-Pick interpolation theorem in distinguished varieties. Then, they
use this theorem to prove a result about dilation of algebraic pairs of isometries modelled on the
distinguished variety.
Now we will give a more detailed summary of the contents of this work by chapters. In Chap-

ter 1, we make an introductory exposition of the Sz.-Nagy–Foiaş theory. We define the vector
valued Hardy spaces and give their main properties. We prove the results about isometric and
unitary dilations of a contraction, giving several different but equally interesting proofs. Then,
we pass to the construction of the Sz.-Nagy–Foiaş model for the case of C·0 contractions, which
has a simpler form. The model for the case of a general contraction is also given without proof.
Finally, we show an application of the model to the study of invariant subspaces, and give a
relation between factorizations of the characteristic function and invariant subspaces.
Chapter 2 is devoted to results concerning the simultaneous dilation of several operators. We

start this chapter with a proof of the Commutant Lifting Theorem. This theorem is usually
considered to be part of the Sz.-Nagy–Foias theory, but since it concerns the dilation of two
operators and it can be used to give a short proof of Andô’s Theorem, we have decided to give it in
this chapter. We also show an application of the Commutant Lifting Theorem to the Nevanlinna-
Pick interpolation problem. Then, we turn to Andô’s Theorem, which can be considered to be the
main result in the theory of dilations of several operators. We show how it can be obtained from
the Commutant Lifting Theorem easily and, conversely, how the Commutant Lifting Theorem also
follows from Andô’s Theorem. Then we introduce von Neumann’s inequality, and its relation with
the existence of the dilation. We also make a brief exposition of the theory of regular dilations.
Next, we give the main examples of non existence of the dilation from the literature. Finally, we
give a positive existence result by Lotto.
In Chapter 3, we give a brief exposition of the Livšic-Vinnikov theory of commuting non-

selfadjoint operators. We start by introducing the concept of a colligation of a single operator,
showing some of the main tools of the colligation: the projection and coupling, the system theo-
retical interpretation and the characteristic function. Then, we give the notion of a colligation of
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several operators, showing that many of the tools which were available for a single operator do
not have a good generalization to colligations of several operators. This motivates the definition
of a vessel, which is a colligation of several operators with some extra extructure that allows one
to generalize these tools. We also introduce the discriminant curve of a vessel and the restoration
formula.
Chapter 4 is the original part of this work and concerns the theory of separating structures. We

start with the theory of pools, showing how their discriminat curve can be defined. Then we pass
to the definition and main results of separating structures. We first treat the affine case separately
to show which properties depend just on the linear algebra. We define the mosaic function, which
is an analytic projection-valued function that, in a certain sense, models the projection onto the
factor H+ of the decomposition K = H− u H+. Then we pass to the orthogonal case, proving
that every separating structure defines a pool. Then we show that, under some mild conditions on
the structure, the associated algebraic curve is separated, and we prove a restoration formula for
the mosaic function of the structure in terms of its algebraic curve. Many of these constructions
generalize those done in [Yak98a,Yak98b] for subnormal operators. Therefore, we will also give
examples of our constructions using subnormal operators and show how our results relate to those
in [Yak98a,Yak98b]. Finally, we give the definition of the compression of a separating structure
and show some of its properties. In particular, we prove that the compression of a separating
structure is a vessel.
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Notation and preliminaries

Complex analysis
The open unit disk in the complex plane C will be denoted by D = {z ∈ C : |z| < 1}. The one
dimensional torus will be denoted by T = ∂D = {z ∈ C : |z| = 1}.

Hilbert spaces
The scalar product in a Hilbert space will be denoted by 〈·, ·〉. By a subspace of a Hilbert space,
we will always mean a linear submanifold which is closed (so that the subspace is also a Hilbert
space). If H1 ⊂ H2 are subspaces of some Hilbert space H, we define H2	H1 = H2 ∩H⊥1 , where
H⊥1 is the orthogonal complement of H1 in H.
If Aj are subsets of a Hilbert space H, we will denote by

∨
j Aj the smallest subspace of H

which contains every set Aj .
The orthogonal direct sum of Hilbert spaces Hn, n ≥ 0 will be denoted by

⊕
n≥0Hn. An

element in the direct sum will be written as (h0, h1, . . .).
If M1,M2 are subspaces of a Hilbert space H, we will usually write M1 +M2 for the smallest

(not necessarily closed) linear submanifold of H which contains both. If M1 ∩M2 = 0, we can
consider the parallel projections Pj : M1 + M2 → Mj . For instance, by definition, P1 has range
M1 and kernel M2. If these parallel projections are bounded (equivalently, if M1 +M2 is closed),
we say thatM1 and M2 are in direct sum and write M1 uM2. If at least one of the two subspaces
Mj is finite-dimensional, then M1 + M2 is always closed. This notation applies also to sums of
more than two summands.

Operators
By an operator between Hilbert spaces, we will always mean a linear and bounded operator. The
set of operators between Hilbert spaces H and K will be denoted by B(H,K). We will write
B(H) instead of B(H,H).
For an operator T ∈ B(H,K) we will define its adjoint operator T ∗ ∈ B(K,H) by the condition
〈Th, k〉 = 〈h, T ∗k〉 for all h ∈ H and k ∈ K.
If T ∈ B(H) and L is a subspace of H, we will say that L is invariant for T if TL ⊂ L. This

is equivalent to PLTPL = TPL, where PL is the orthogonal projection onto L. It is easy to see
that L is invariant for T if and only if H 	L is invariant for the adjoint operator T ∗. We will say
that the subspace L reduces T if and only if L is invariant for both T and T ∗. This is equivalent
to PLT = TPL.
An operator A ∈ B(H) will be called selfadjoint if A = A∗. If A,B ∈ B(H) are selfadjoint

operators, we will write A ≤ B if 〈Ah, h〉 ≤ 〈Bh, h〉 for all h ∈ H. If A ≥ 0, there is a unique
operator B ≥ 0 such that A = B2. This operator B will be denoted by A

1
2 .

An operator V ∈ B(H,K) will be called an isometry if ‖V h‖ = ‖h‖ for all h ∈ H. This
is equivalent to the condition V ∗V = I. An operator U ∈ B(H,K) will be called a unitary if
U∗ = U−1. It is easy to see that an isometry is a unitary if and only if it is onto.
Two operators T ∈ B(H,K) and T ′ ∈ B(H ′,K ′) are called unitarily equivalent if there exist

unitaries U1 ∈ B(H,H ′) and U2 ∈ B(K,K ′) such that T ′U1 = U2T . If K = H and K ′ = H ′, it is
usual to require that U2 = U1.

ix



Notation and preliminaries

An operator T ∈ B(H,K) will be called a contraction if ‖T‖ ≤ 1. This is equivalent to the
condition T ∗T ≤ I. If T is a contraction, one can define its defect operator DT = (I−T ∗T )

1
2 and

its defect subspace DT = DTH. Note that if T is a contraction, then T ∗ is also a contraction.
A sequence of operators {Tn} ⊂ B(H,K) will be said to converge uniformly (or in the operator

norm) to T ∈ B(H,K) if ‖Tn−T‖ → 0. It will be said to converge strongly to T if ‖Tnh−Th‖ → 0
for all h ∈ H, and it will be said to converge weakly to T if 〈Tnh, k〉 → 〈Th, k〉 for all h ∈ H and
k ∈ K.

Miscellanea
The end of a proof will be marked with the usual symbol . Some examples will be given in
Chapter 4. Then end of those examples will be marked with the symbol ♠.

x



1. Dilations of a single operator:
Sz.-Nagy–Foiaş theory

This chapter is devoted to a brief exposition of the Sz.-Nagy–Foiaş theory of contractions. First,
we will define the concepts of extension, lifting and dilation, which will be important throughout
all this work, especially the first two chapters. Then, we give a very brief introduction to vector
valued Hardy spaces, which will be needed later. We give some general facts about unilateral and
bilateral shifts, and their relation with Hardy spaces. Then we show how every contraction can
be dilated to an isometry or a unitary. This allows us to construct the Sz.-Nagy–Foiaş functional
model of a contraction. We will do this only for C·0 contractions, which is a somewhat simpler
case. However, the general statement of the model is also given at the end of Section 1.5. Finally,
we show an application of the model to the study of invariant subspaces.
The principal exposition of this theory can be found in the book by Sz.-Nagy and Foiaş

[SNFBK10]. Alternative expositions from slightly different points of view appear in the book
by Foiaş and Frazho [FF90] and in the books by Nikolski [Nik86,Nik02b].

1.1. Extensions, liftings and dilations

Let H, H ′ be Hilbert spaces, A ∈ B(H,H ′) and K, K ′, larger Hilbert spaces K ⊃ H, K ′ ⊃ H ′.
The operator B ∈ B(K,K ′) is said to be an extension of A if A = B|H. In this case, A is called
a restriction of B. It is easy to see that this is equivalent to the condition that B has the matrix
representation

B =

[ H K	H

H′ A ∗
K′	H′ 0 ∗

]
,

with respect to the decompositions K = H ⊕ (K 	H) and K ′ = H ′ ⊕ (K ′ 	H ′).
We say that B is a lifting of A if PH′B = APH , where PH and P ′H denote the orthogonal

projections onto H and H ′ respectively. It is easy to check that B is a lifting of A if and only if
the adjoint operator B∗ is an extension of A∗, and also if and only if

B =

[ H K	H

H′ A 0
K′	H′ ∗ ∗

]
.

The operator B is called a weak dilation of A if A = PH′B|H. In this case, A is called a
compression of B. This notion corresponds to the matrix representation

B =

[ H K	H

H′ A ∗
K′	H′ ∗ ∗

]
.

Assume now that H = H ′ and K = K ′. We say that B is a dilation of A if Bn is a weak
dilation of An for each n ≥ 0. It is clear that if B is an extension of A, then B is also a dilation
of A.

1



1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

The following Lemma, due to Sarason, gives the matrix representation of a dilation. We will
formulate it in a more general context, because it will be useful later in this form. Recall that an
algebra A is called unital if it has a unit and that a homomorphism between two unital algebras
is called unital if it takes the unit of the first algebra to the unit of the second one.

Lemma 1.1 (Sarason). Let A be a complex unital algebra, ϕ : A → B(K) a unital homomorphism,
and H a subspace of K. The map ϕ̃ : A → B(H) defined by ϕ̃(a) = PHϕ(a)|H is a homomorphism
if and only if H = H1 	H2, where H1 and H2 are subspaces of K which are ϕ(a)-invariant for
every a ∈ A.

Proof. First assume that ϕ̃ is a homomorphism. We define

H1 =
∨
a∈A

ϕ(a)H.

Note that H ⊂ H1 because A is unital. Then we define H2 = H1 	H, so that H = H1 	H2. It
is clear that H1 is invariant for every ϕ(a), because ϕ is a homomorphism.
To show that H2 is invariant for ϕ(a), we must check that

(PH1 − PH)ϕ(a)(PH1 − PH) = ϕ(a)(PH1 − PH). (1.1)

Since H1 is invariant for ϕ(a), we have PH1ϕ(a)PH1 = ϕ(a)PH1 . Also, PH1ϕ(a)PH = ϕ(a)PH , by
definition of H1. Hence, (1.1) is equivalent to

PHϕ(a)PH1 = PHϕ(a)PH . (1.2)

It suffices to check equation (1.2) applied to vectors of the form ϕ(b)h, for b ∈ A and h ∈ H,
because the family of those vectors spans H1. Therefore, we need to check that

PHϕ(a)ϕ(b)|H = PHϕ(a)PHϕ(b)|H,

for every b ∈ A. Using the fact that ϕ is a homomorphism, this equation rewrites as

ϕ̃(ab) = ϕ̃(a)ϕ̃(b), (1.3)

which is true precisely because ϕ̃ is a homomorphism.
To prove the converse, note that the hypothesis imply (1.1), and that from this we can obtain

(1.3) in roughly the same way as before (note that ϕ(b)H ⊂ H1 for every b ∈ A). This implies
that ϕ̃ is multiplicative. Since ϕ̃ is also linear, it is a homomorphism.

Applying the Lemma to the case when A = C[z] is the algebra of complex polynomials and
ϕ(p) = p(B) (see Appendix A for the definition of the polynomial functional calculus), we see
that B is a dilation of A if and only if

B =

∗ ∗ ∗
0 A ∗
0 0 ∗

 ,
with respect to the decomposition K = H2 ⊕H ⊕ (K 	H1). This shows that if B is a lifting of
A, then B is also a dilation of A (just put H1 = K).

2



1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

1.2. Vector valued Hardy spaces

The theory of Hardy spaces of functions with values in a Hilbert space will be needed later. In
this section, which has an auxiliary character, we will give the main definitions and results of this
theory. A more detailed exposition can be found in [SNFBK10, Chapter V].
Let U be a separable Hilbert space. If X is a measure space, a function f : X → U will be

called measurable if each of the scalar-valued functions 〈f(·), u〉, u ∈ U , is measurable. This
notion is usually called weak measurability. There exists another notion of measurability called
Bochner measurability or strong measurability. In the case when U is separable, this two notions
coincide, by the Pettis Theorem. A good treatment of this topic can be found in [ABHN11, Section
1.1].
The space L2(U ) is defined as the space of U -valued measurable functions f on T such that

‖f‖2L2(U ) =
1

2π

∫ 2π

0
‖f(eit)‖2U dt <∞.

With this norm, L2(U ) becomes a Hilbert space.
Any function f ∈ L2(U ) can be written in Fourier series as

f(eit) =
∑
n∈Z

eintcn, cn ∈ U ,

where this series is convergent in the sense of the L2(U )-norm. The Fourier coefficients are
determined by

〈cn, u〉U =
1

2π

∫ 2π

0
e−int〈f(eit), u〉U dt = 〈f, eintu〉L2(U ), u ∈ U ,

and the Parseval identity holds:
‖f‖2L2(U ) =

∑
n∈Z
‖cn‖2U .

The operator Meit of multiplication by eit on L2(U ) will be important in the sequel. It is
defined by (Meitf)(eit) = eitf(eit).
If Ω ⊂ C is an open set and X is a Banach space, a function g : Ω→ X will be called analytic

if each of the scalar-valued functions ϕ ◦ g, ϕ ∈ X∗, is analytic (i.e., holomorphic). This notion
is usually called weak analyticity, and there exists also a notion of strong analyticity. The two
notions are equivalent when X is a Banach space. See, for instance, [Rud91, Chapter 3] for a
discussion of these notions in the context of topological vector spaces.
The space H2(U ) is defined as the space of analytic U -valued functions g on D such that

‖g‖2H2(U ) = sup
0<r<1

1

2π

∫ 2π

0
‖g(reit)‖2U dt <∞. (1.4)

With this norm, H2(U ) is a Hilbert space.
Any function g ∈ H2(U ) can be written in power series as

g(z) =
∑
n≥0

znan, an ∈ U . (1.5)

3



1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

This power series converges in the U -norm uniformly on compact subsets of D. Direct computa-
tion using (1.4) shows that

‖g‖2H2(U ) =
∑
n≥0

‖an‖2U .

If g ∈ H2(U ) has the power series expansion (1.5), we can also consider the function f ∈ L2(U )
given by

f(eit) =
∑
n≥0

eintan.

Then ‖f‖L2(U ) = ‖g‖H2(U ). Defining gr(eit) = g(reit), for 0 < r < 1, one can easily check that
gr ∈ L2(U ) and that gr → f in the L2(U )-norm as r → 1−. This function f is called the
boundary value function of g, and g can be recovered from f by the Poisson formula

g(reit) =
1

2π

∫ 2π

0
Pr(t− s)f(eis) ds, (1.6)

where Pr(t) is Poisson’s kernel

Pr(t) =
1− r2

1− 2r cos t+ r2
.

Equation (1.6) can be checked directly for g(z) = zn, n ≥ 0, and then for an arbitrary g ∈ H2(U )
by using linearity and taking limits. Moreover, by using the properties of Poisson’s kernel, one
can prove that f is also a radial limit of g almost everywhere:

f(eit) = lim
r→1−

g(reit), a.e. eit ∈ T,

where the limit is taken in the U -norm. The proof of this fact is the same as for the scalar-
valued H2(D). This is the so called Fatou’s Theorem, and can be found, for instance, in [MAR07,
Theorem 1.1.26] and [Dur70, Theorem 1.2].
For each function f ∈ L2(U ) whose negative Fourier coefficients vanish, it is easy to see that

(1.6) defines a function g ∈ H2(U ). Hence, such a function arises as the boundary value function
of some g ∈ H2(U ). It is customary to identify a function in H2(U ) with its boundary value
function in L2(U ) and to identify H2(U ) with the subspace of L2(U ) of functions with vanishing
negative Fourier coefficients. We will do so in the sequel without explicit mention.
We define the operator Mz of multiplication by z in H2(U ) by (Mzg)(z) = zg(z). Note that

the operator Meit is an extension of Mz.
If U and Y are separable Hilbert spaces, the space H∞(U ,Y ) is defined as the space of

analytic functions Θ in D which take values in B(U ,Y ), and such that

‖Θ‖H∞(U ,Y ) = sup
z∈D
‖Θ(z)‖ <∞.

Such a function Θ ∈ H∞(U ,Y ) is called a bounded analytic function.
If Θ ∈ H∞(U ,Y ), it has a power series representation

Θ(z) =
∑
n≥0

znΘn, Θn ∈ B(U ,Y ).

This series converges in the B(U ,Y )-norm uniformly on compact subsets of D.
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1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

A bounded analytic function Θ defines an operator of multiplication by Θ, which we will also
denote by Θ. The operator Θ : H2(U )→ H2(Y ) is defined (Θg)(z) = Θ(z)g(z), for g ∈ H2(U ).
The power series of Θg can be computed by

(Θg)(z) =
∑
0≤n

0≤m≤n

znΘman−m,

where (1.5) is the power series of g.
Moreover, one can also prove that the strong limit of Θ(reit) as t → 1− exists a.e. eit ∈ T.

Hence, we can define a.e. a boundary value function, which we will also denote by Θ, by

Θ(eit) = lim
r→1−

Θ(reit).

This allows us to define also the operator of multiplication by Θ in L2(U ), Θ : L2(U )→ L2(Y ),
by (Θf)(eit) = Θ(eit)f(eit). Note that when H2(U ) is identified with a subspace of L2(U ), this
operator is an extension of the operator Θ in H2(U ) previously defined.
A function Θ ∈ H∞(U ,Y ) will be called a contractive analytic function if Θ(z) is a contraction

for all z ∈ D. A contractive analytic function Θ(z) is called inner if Θ(eit) is an isometry a.e. on
T.
The following Lemma characterizes which operators can arise as multiplication by a contractive

analytic function. It will be useful later. Note that the converse of this Lemma is obvious.

Lemma 1.2. Let Q : H2(U ) → H2(Y ) be a contraction such that QMz = MzQ. Then there
exists a contractive analytic function Θ ∈ H∞(U ,Y ) such that Q = Θ (in the sense that Q is
the operator of multiplication by Θ). Moreover, if Q is an isometry, then Θ is inner.

Proof. Fix an arbitary u ∈ U . We will also denote by u the function inH2(U ) which is constantly
u. If p(z) is a polynomial we have

‖p(z)Qu‖2H2(Y ) = ‖Qp(z)u‖2H2(Y ) ≤ ‖p(z)u‖
2
H2(U ),

which implies
1

2π

∫ 2π

0
|p(eit)|2‖(Qu)(eit)‖2Y dt ≤ 1

2π

∫ 2π

0
|p(eit)|2‖u‖2U dt.

It is clear that this inequality must be also true when p is a trigonometric polynomial. Hence, by
the Weierstrass approximation theorem,

1

2π

∫ 2π

0
ϕ(eit)‖(Qu)(eit)‖2Y dt ≤ 1

2π

∫ 2π

0
ϕ(eit)‖u‖2U dt,

for every non-negative continuous function ϕ in T. This implies that

‖(Qu)(eit)‖2H2(Y ) ≤ ‖u‖
2
U , a.e. t ∈ [0, 2π].

By the Poisson formula (1.6), since
∫ 2π

0 Pr(t) dt = 2π, we get

‖(Qu)(z)‖2Y ≤ ‖u‖2U , z ∈ D. (1.7)

Now it is clear that
Θ(z)u = (Qu)(z), u ∈ U , (1.8)

defines a contractive analytic function.
Finally, assume that Q is an isometry. Then all the inequalities in the reasoning above up to

(1.7) are indeed equalities. Letting z → eit ∈ T in (1.8), we get Θ(eit)u = (Qu)(eit) a.e. on T.
Since equality holds in (1.7), we see that Θ(eit) is an isometry a.e. on T. Hence, Θ is inner.
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1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

The next Lemma gives alternative characterizations of contractive analytic functions and inner
functions which are quite useful.

Lemma 1.3. The following conditions are equivalent for a bounded analytic function Θ ∈ H∞(U ,
Y ):

(i) Θ is a contractive analytic function.

(ii) The operator Θ : H2(U )→ H2(Y ) is a contraction.

(iii) The operator Θ : L2(U )→ L2(Y ) is a contraction.

The following conditions are also equivalent:

(a) Θ is an inner function.

(b) The operator Θ : H2(U )→ H2(Y ) is an isometry.

(c) The operator Θ : L2(U )→ L2(Y ) is an isometry.

Proof. The implication (iii) ⇒ (ii) is obvious. To prove (ii) ⇒ (i), note that if we let Q be the
operator of multiplication by Θ in Lemma 1.2, then we get a contractive analytic function Θ′ such
that the operators of multiplication by Θ and Θ′ are equal. Then, Θ and Θ′ must be the same
contractive analytic function. Finally, (i)⇒ (iii) is trivial, because Θ(eit), being a strong limit of
contractions a.e. on T, must be a contraction a.e. on T.
To prove the second part, note that (a) ⇒ (c) and (c) ⇒ (b) are trivial and (b) ⇒ (a) follows

from Lemma 1.2 as in the proof of (ii)⇒ (i).

A particular kind of contractive analytic functions are those which are constant, i.e., those
contractive analytic functions Θ ∈ H∞(U ,Y ) such that Θ(z) = Θ0 ∈ B(U ,Y ) for all z ∈ D. If
the constant value of such a Θ is an isometry (a unitary), then Θ is called a constant isometry
(a constant unitary). The following Lemma gives a characterization of constant isometries using
the maximum modulus principle.

Lemma 1.4. If Θ ∈ H∞(U ,Y ) is a contractive analytic function such that Θ(0) is an isometry,
then Θ is a constant isometry.

Proof. Fix u ∈ U with ‖u‖U = 1 and put ϕ(z) = 〈Θ(z)u,Θ(0)u〉Y . Then ϕ(z) is scalar-valued
and holomorphic in D, and |ϕ(z)| ≤ 1 for all z ∈ D, because Θ(z) is a contraction. Moreover,
ϕ(0) = 1, because Θ(0) is an isometry. By the maximum modulus principle, it follows that
ϕ(z) = 1 for all z ∈ D. Since Θ(z) is a contraction, this implies Θ(z)u = Θ(0)u. Therefore, Θ is
constant, because u was arbitrary.

Note that in the hypothesis of this Lemma, if Θ(0) is in fact unitary, then it follows that Θ is
a constant unitary.

1.3. Unilateral and bilateral shifts

In this section we will give the definition and basic facts of unilateral and bilateral shifts. These
operators will be important in the sequel and are also good examples of isometries and unitaries,
respectively.
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If V is an isometry on H, a subspace L ⊂ H is called a wandering space for V if V nL ⊥ V mL for
n 6= m, n,m ≥ 0. Since V is an isometry, it is easy to see that this is equivalent to the condition
V nL ⊥ L for n ≥ 1. Indeed, if n ≥ m ≥ 0, since we have V n−mL ⊥ L, and application of V
preserves orthogonality, applying V m to both subspaces we get V nL ⊥ V mL. Given a wandering
space L, one can form the subspace

M+(L) =
⊕
n≥0

V nL.

An isometry V ∈ B(H) is called a unilateral shift if there exists a wandering subspace L such
that H = M+(L). In this case, L is uniquely determined by V . In fact, L = H 	 V H. To see
this, just note that if H = M+(V ), then

H 	 V H =
(⊕
n≥0

V nL
)
	 V

(⊕
n≥0

V nL
)

=
(⊕
n≥0

V nL
)
	
(⊕
n≥1

V nL
)

= L.

The dimension of L is called the multiplicity of the shift, and a unilateral shift is uniquely
determined up to unitary equivalence by its multiplicity (it is very easy to construct a unitary
between two shifts of the same multiplicity).
An example of a unilateral shift is the operator Mz in H2(U ), where U is a Hilbert space.

Indeed, this operator is the canonical example of a unilateral shift. If V ∈ B(H) is a unilateral
shift with wandering space L and W : U → L is a unitary, then we can define a unitary operator
Z+ : H → H2(U ) by

Z+

∑
n≥0

V nln =
∑
n≥0

znW ∗ln, ln ∈ L. (1.9)

Then Z+ transforms the unilateral shift V into the operator Mz on H2(U ), in the sense that
Z+V = MzZ+.
If U is a unitary and L is wandering for U , then note that it follows that UnL ⊥ UmL for

n 6= m, n,m ∈ Z. Hence, one can define

M(L) =
⊕
n∈Z

UnL.

The operator U ∈ B(K) is called a bilateral shift if M(L) = K for some wandering space L.
In this case L is not uniquely determined by U . Note that if L is wandering, then UnL is also
wandering for every n ∈ Z and M(L) = M(UnL). However, one can check that the dimension of
any two possible such subspaces L is the same. This dimension is called the multiplicity of the
shift, and two bilateral shifts of the same multiplicity are unitarily equivalent.
From this, it is clear how a unilateral shift V ∈ B(H) can be extended to a bilateral shift of

the same multiplicity U ∈ B(K). We take L the wandering subspace of V , put K =
⊕

n∈Z L and
define U by U(. . . , l−1, ql0, l1, . . .) = (. . . , l−2, |l−1, l0, . . .) (here, the symbol q marks the vector in
the 0-th position). Then we embed H into K by

∑∞
n=0 V

nln 7→ (. . . , 0, 0, ql0, l1, . . .). It is easy to
see that the embedding is well defined and U is a bilateral shift and a extension of V .
An example of a bilateral shift is the operator Meit in L2(U ), where U is a Hilbert space.

As for the case of unilateral shifts, this operator is the canonical example of a bilateral shift. If
U ∈ B(K) is a bilateral shift, L is a wandering subspace of U , and W : L→ U is a unitary, then
the unitary Z : K → L2(U ) defined by

Z
∑
n∈Z

Unln =
∑
n∈Z

eintW ∗ln, ln ∈ L (1.10)

7



1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

transforms the bilateral shift U into the operator Meit on L2(U ), in the sense that ZV = MeitZ.
Note that if we put V = U |M+(L), then V is a unilateral shift and the restriction Z|M+(L) :
M+(L)→ H2(U ) is a unitary which takes V into Mz. This unitary is precisely the operator Z+

defined in (1.9)
If we view a unilateral shift V as the operator Mz in some H2(U ), then the procedure of

extension of V to a bilateral shift U describe above corresponds to extending Mz by the operator
Meit in L2(U ).

1.4. Isometric and unitary dilations

This section deals with the existence and the construction of isometric and unitary dilations of a
contraction. Recall that if T ∈ B(H) is a contraction, its defect operator is DT = (I − T ∗T )

1
2 ,

and its defect subspace is DT = DTH. This will play an important role in the sequel.
We will start by proving a theorem of Sz.-Nagy which shows that every contraction can be

lifted to an isometry.

Theorem 1.5 (Sz.-Nagy). Any contraction T ∈ B(H) can be lifted to an isometry V ∈ B(K+).
This lifting can be chosen to be minimal, in the sense that

K+ =
∨
n≥0

V nH. (1.11)

Moreover, any two minimal isometric dilations of T are isomorphic. In particular, every minimal
isometric dilation of T is indeed a lifting.

Proof. We put K+ =
⊕

n≥0H, and embed H into K+ by h 7→ (h, 0, . . .). We define V by

V =


T 0 0 · · ·
DT 0 0 · · ·
0 I 0 · · ·
0 0 I · · ·
...

...
...

. . .

 .
Direct calculation shows that V ∗V = I. Hence, V is isometric, and it is apparent from its
definition that V is a lifting of T , and therefore, a dilation of T .
This lifting is not minimal in general. It is possible to check that if one repeats the preceding

construction with K+ = H ⊕ (
⊕

n≥1 DT ), then the lifting obtained is minimal. However, it is
easier to note that for every isometric dilation (lifting) V of T , the subspace K̂+ =

∨
n≥0 V

nH is
invariant for V and the restriction V |K̂+ continues to be an isometric dilation (lifting) of T .
Observe that if V ∈ B(K+) is some isometric dilation of T and h, h′ ∈ H, then

〈V nh, V mh′〉 =

{
〈V n−mh, h′〉 = 〈Tn−mh, h′〉, if n ≥ m ≥ 0,

〈h, V m−nh′〉 = 〈h, Tm−nh′〉, if m ≥ n ≥ 0,

so 〈V nh, V mh′〉 does not depend on the particular choice of V .
Now assume that V1 ∈ B(K1) and V2 ∈ B(K2) are minimal isometric dilations of T . Then the

linear map U defined by
UV n

1 h = V n
2 h, h ∈ H, n ≥ 0,

is well defined and continues to a unitary U : K1 → K2 such that Uh = h for every h ∈ H.
Hence, the isometric dilations V1 and V2 are isomorphic.
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The following lemma regarding isometric liftings will be useful in the next chapter.

Lemma 1.6. Let T ∈ B(H) be a contraction, V ∈ B(K) an isometric lifting of T . Put

K+ =
∨
n≥0

V nH.

Then K+ reduces V and V |K+ is the minimal isometric dilation of T .

Proof. Clearly, K+ is invariant for V . We show that it is also invariant for V ∗. Since V is a lifting
of T , we have V ∗|H = T ∗. This implies that V ∗H = T ∗H ⊂ H. Also, since V is an isometry, for
n ≥ 1, we get V ∗V nH = V n−1H ⊂ K+. This implies that K+ is invariant for V ∗.
The fact that V |K+ is the minimal isometric dilation of T was already observed in the proof

of Theorem 1.5.

Now we would like to show that an isometry V can be dilated to a unitary. Applying this to
the isometry V obtained in the preceding Theorem 1.5, we will obtain a unitary dilation of a
contraction T . The unitary dilation of an isometry V can be constructed in three different but
related ways. The first one is by applying Theorem 1.5 to V ∗, the second one uses the so called
Kolmogorov-von Neumann-Wold decomposition of an isometry, and the third one constructs the
dilation using a matrix representation, as in the proof of the Theorem 1.5 above.

Lemma 1.7. If V ∈ B(K+) is an isometry, and U ∈ B(K) is the minimal isometric dilation of
V ∗, then U is unitary.

Proof. We must show that U∗ is an isometry. If n ≥ 1 and k′ ∈ K+, we have

‖U∗Unk‖ = ‖Un−1k‖ = ‖Unk‖,

because U is an isometry. Also, since U is in fact a lifting of V ∗, we have U∗|K+ = V , so

‖U∗k‖ = ‖V k‖ = ‖k‖,

because V is an isometry. It follows that DU∗U
n|K+ = 0 for n ≥ 0. Since K =

∨
n≥0 U

nK+, this
implies that U∗ is an isometry.

To obtain a unitary dilation of a contraction T ∈ B(H), we first use Theorem 1.5 to obtain
V ∈ B(K+) an isometric dilation of T . Then we construct U the minimal isometric dilation of
V ∗, using again Theorem 1.5. By Lemma 1.7, U∗ is a unitary extension of V . It remains to see
that U∗ is a unitary dilation of V , but this is true because U∗ is a dilation of V and V is a dilation
of T .
We can also construct a unitary dilationW ∈ B(K̂) of T ∈ B(H) which is minimal, in the sense

that K̂ =
∨
n∈ZW

nH. To do this, we put K̂ =
∨
n∈Z U

∗nH and observe that K̂ reduces U∗, so
that W = U∗|K̂ is a minimal unitary dilation of T .
If in the previous construction one chooses V to be the minimal isometric dilation of T , it is

easy to see that the obtained U∗ is minimal. In fact, note that U∗nH = V nH for n ≥ 0, so that

K =
∨
n≥0

UnK+ =
∨
n≥0

Un
( ∨
m≥0

V mH
)

=
∨
n∈Z

U∗nH.

Thus, we have proved the following Theorem.
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Theorem 1.8 (Sz.-Nagy). Any contraction T ∈ B(H) can be dilated to a unitary U ∈ B(K).
This dilation can be chosen to be minimal, in the sense that

K =
∨
n∈Z

UnH. (1.12)

If one puts
K+ =

∨
n≥0

UnH, (1.13)

then U+ = U |K+ is the minimal isometric dilation of T . Moreover, any two minimal unitary
dilations of T are isomorphic.

Proof. The existence has already been proved, the fact that U+ is the minimal isometric dilation
of T is obvious, and the uniqueness of the minimal unitary dilation is shown in a similar way to
the uniqueness of the minimal isometric dilation in Theorem 1.5.

The second proof of Theorem 1.8 uses the Kolmogorov-von Neumann-Wold decomposition, a
structure result for isometric operators.

Theorem 1.9 (Kolmogorov-von Neumann-Wold decomposition). Let V ∈ B(H) be an isometry.
Then there is a decomposition H = H0⊕H1 such that H0 and H1 reduce V , the restriction V |H0

is unitary, and V |H1 is a unilateral shift.
Moreover, the decomposition is uniquely determined by

H0 =
⋂
n≥0

V nH, H1 = M+(L), L = H 	 V H.

Proof. First note that L is wandering for V . Indeed, V nL ⊂ V L ⊥ L, so H1 = M+(L) is well
defined. Since

L⊕ V L⊕ · · · ⊕ V nL = (H 	 V H)⊕ (V H 	 V 2H)⊕ (V nH 	 V n+1H) = H 	 V n+1H,

we see that H0 = H	H1. The spaces V nH form a non-increasing chain and therefore V H0 = H0.
In particular, H0 is V invariant. The subspace H1 is also V invariant. Hence, both H0 and H1

reduce V . It is clear that V |H1 is a unilateral shift, and V |H0 is unitary, because V H0 = H0.
To prove the uniqueness of the decomposition, assume that H = H ′0 ⊕H ′1 is a decomposition

such that V H ′0 = H ′0 and H ′1 = M+(L′), where L′ is a wandering space for V |H ′1. Then

L = H 	 V H = (H ′0 ⊕H ′1)	 (V H ′0 ⊕ V H ′1) = H ′1 	 V H ′1 = L′,

and this implies H ′0 = H0, H ′1 = H1.

To construct a unitary dilation of a contraction T , we first use Theorem 1.5 to construct V
an isometric dilation of T . By Theorem 1.9, V is a direct sum V = V0 ⊕ V1 of a unitary and a
unilateral shift. Let U1 be the bilateral shift extension of V1. Then U = V0 ⊕ U1 is a unitary
extension of V , and hence a unitary dilation of T . This unitary dilation is not minimal in general,
but if we choose V to be the minimal isometric dilation of T , then one can check that this
construction produces the minimal unitary dilation of T .

10



1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

For the third proof of Theorem 1.8, put K =
⊕

n∈ZH and define U by the matrix

U =



. . .
...

...
...

...
...

...
. . .

· · · I 0 0 0 0 · · ·
· · · 0 I 0 0 0 0 · · ·
· · · 0 0 DT ∗

qT 0 0 · · ·
· · · 0 0 −T ∗ DT 0 0 · · ·
· · · 0 0 0 0 I 0 · · ·
· · · 0 0 0 0 0 I · · ·
. . .

...
...

...
...

...
...

. . .


. (1.14)

(Here the symbol q marks the 00-th entry). Then one can check by direct computation that U is
unitary. In doing this, one should use the intertwining relations

TDT = DT ∗T, DTT
∗ = T ∗DT ∗ . (1.15)

The first relation is true because TD2
T = D2

T ∗T (note that DT is a uniform limit of polynomials
of D2

T ), and the second is obtained by taking adjoints. This dilation is not minimal, but if one
repeats the construction with K = (

⊕
n<0 DT ∗) ⊕ qH ⊕ (

⊕
n≥1 DT ), where we mark with q the

summand in the 0-th position, then the obtained U is minimal. Here one has to use (1.15) to see
that U acts correctly in this space.

1.5. The Sz.-Nagy–Foiaş functional model of a C·0 contraction

The geometric study of the minimal unitary dilation of a contraction gives rise to the Sz.-Nagy–
Foiaş analytic model of the contraction. Here, for the sake of the simplicity of the exposition, we
will construct the functional model for the case of a C·0 contraction, which is somewhat simpler.
The statement of the model theorem for a general contraction will be given without proof at the
end of the section.
We say that a contraction T ∈ B(H) is of class C·0 if T ∗n → 0 strongly as n → ∞. Let

U ∈ B(K) be the minimal unitary dilation of a contraction T ∈ B(H), and U+ ∈ B(K+) the
minimal isometric dilation of T . We consider U+ as a restriction of U , as in Theorem 1.8. A
moment’s thought shows that U+ is a unilateral shift if and only if T is of class C·0. Indeed,
Theorem 1.9 shows that an isometry is a unilateral shift if and only if it is of class C·0. Now,
since U∗+ is an extension of T ∗, if n ≥ m ≥ 0 and h ∈ H,

U∗n+ Um+ h = U
∗(n−m)
+ h = T ∗(n−m)h.

As U+ is minimal K+ =
∨
m≥0 U

m
+ H, so this shows that if T is C·0 then U+ is also C·0. The

converse is obvious.
Therefore, the contractions of class C·0 are precisely the ones whose minimal isometric dilation

is a unilateral shift (and hence, its minimal unitary dilation is a bilateral shift). In the case of
a general contraction, the minimal isometric dilation has a unitary part and this part has to be
taken into account in the construction of the model.
The theorem that we are going to prove is the following.

Theorem 1.10 (Sz.-Nagy–Foiaş). Let T be a C·0 contraction on a separable Hilbert space. Define
ΘT the characteristic function of T by

ΘT (z) = [−T + zDT ∗(I − zT ∗)−1DT ]|DT .

11



1. Dilations of a single operator: Sz.-Nagy–Foiaş theory

Then ΘT is an inner function and T is unitarily equivalent to the operator T on H2(DT ∗) 	
ΘTH

2(DT ) defined by

(T ∗u)(z) =
u(z)− u(0)

z
, u ∈ H2(DT ∗)	ΘTH

2(DT ).

The minimal isometric dilation of T is the operator Mz of multiplication by z on the space
H2(DT ∗) and the minimal unitary dilation of T is the operator Meit of multiplication by eit

on the space L2(DT ∗).

Proof. Assume that T ∈ B(H) is a C·0 contraction and that we have constructed its minimal
unitary dilation U by using the matrix form (1.14) acting on the space

K = (
⊕
n<0

DT ∗)⊕ qH ⊕ (
⊕
n≥1

DT )

(here and in the sequel we mark with q the 0-th position whenever ambiguity could arise). We
also consider the minimal isometric dilation U+ as the restriction of U to the subspace

K+ = H ⊕ (
⊕
n≥1

DT ).

The isometry U+ is a unilateral shift and its wandering space is L = K+ 	 U+K+ = kerU∗+.
Using the matrix form of U+, we see that

L = kerU∗+ = {(h, d, 0, . . .) ∈ K+ : T ∗h+DTd = 0}. (1.16)

Now we fix a vector k = (0, d, 0, . . .) ∈ K+. Since K+ = M+(L), then k can be written as

k =
∑
n≥0

Un+ln, ln ∈ L. (1.17)

We want to find the expressions in terms of d for the “Fourier coefficients” ln.
To do this, let PL be the orthogonal projection onto L. Fix a vector

k0 = (h0, d0, 0, . . .) ∈ K+.

Now we compute PLk0. Since PLk0 ∈ L, we have

PLk0 = (h1, d1, 0, . . .), (1.18)

for some h1 ∈ H, d1 ∈ DT such that

T ∗h1 +DTd1 = 0 (1.19)

Also, (I − PL)k0 ∈ K+ 	 L = U+K+. Hence, there is some k′ ∈ K+ such that

(I − PL)k0 = U+k
′.

Using the matrix form of U+ and equating the components of the vectors, we get that there is
some h′ ∈ H such that

h1 = Th′ + h0, d1 = DTh
′ + d0. (1.20)

12
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Now we substitute (1.20) into (1.19) to find that

0 = T ∗h1 +DTd1 = T ∗Th′ + T ∗h0 +D2
Th
′ +DTd0 = h′ + T ∗h0 +DTd0.

This equation determines h′ in terms of k0 = (h0, d0, 0, . . .), and hence, it also determines h1 and
d1 by (1.20). Therefore, by (1.18), we get

PL(h0, d0, 0, . . .) = (D2
T ∗h0 − TDTd0, T

∗Td0 −DTT
∗h0, 0, . . .). (1.21)

Returning to the problem of computing the Fourier coefficients ln of k = (0, d, 0, . . .), we see
that

l0 = PLk = (−TDTd, T
∗Td, 0, . . .), (1.22)

and for n ≥ 1

ln = PLU
∗n
+ k = PL(T ∗(n−1)DTd, 0, . . .) = (D2

T ∗T
∗(n−1)DTd,−DTT

∗nDTd, 0, . . .). (1.23)

Here, the first equality is obtained using the matrix form of U+.
Since the restriction of U+ to K+ 	 H is a unilateral shift with wandering space DT , this

computation indeed allows us to give the expression for the Fourier coefficients of any k ∈ K+	H.
Hence, we can describe the subspace K+ 	H by means of the Fourier coefficients.
Until now, the subspace L has played an important role, but it is unfortunate that it does not

have a simple enough expression in terms of the operator T . We will remedy this by showing that

U∗L = · · · ⊕ 0⊕DT ∗ ⊕ q0⊕ 0⊕ · · · , (1.24)

so that
W = U |(· · · ⊕ 0⊕DT ∗ ⊕ q0⊕ 0⊕ · · · )

gives an isomorphism
W : DT ∗ → L.

The inclusion ⊂ in (1.24) is obtained by taking an arbitrary l ∈ L, noting that

l = (. . . , 0,qh, d, 0, . . .), with T ∗h+DTd = 0

by (1.16), and computing U∗l using the matrix form of U . To show the reverse inclusion, take the
vector k = (. . . , 0, d,q0, 0, . . .), note that Uk = (. . . , 0,­DT∗d,−T ∗d, 0, . . .) and check that Uk ∈ L
using (1.15) and (1.16).
In particular, this allows us to identify the Fourier coefficients ln with elements of DT∗. Using

W ∗(h, d, 0, . . .) = DT ∗h− Td, (h, d, 0, . . .) ∈ L,

which comes from the matrix form of U , and relations (1.15), (1.22) and (1.23), we compute

W ∗l0 = −(D∗TTDT − TT ∗T )d = −Td
W ∗ln = (D3

T ∗T
∗(n−1)DT + TDTT

∗nDT )d = DT ∗T
∗(n−1)DTd, n ≥ 1.

(1.25)

This is all the information about the minimal unitary dilation that we need to construct the
Sz.-Nagy–Foiaş model. To actually construct the model, we need the L2, H2 and H∞ spaces
introduced in Section 1.2.
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Applying the results of Section 1.3 about the relation between Hardy spaces and shifts, we see
that the operator Z : K → L2(DT ∗) defined by

Z
∑
n∈Z

Unln =
∑
n∈Z

eintW ∗ln

is a unitary which transforms the operator U into the operatorMeit , in the sense that ZU = MeitZ.
The restriction Z+ = Z|K+ maps K+ onto the Hardy space H2(DT ∗) and takes U+ into the
operator Mz. Thus, L2(DT ∗) and H2(DT ∗) will be our model spaces, modelling K and K+

respectively, and Meit and Mz will be our model operators, modelling U and U+ respectively.
We need to identify which subspace of H2(DT ∗) is associated with the subspace H (i.e., we

need to compute ZH), and that is the reason why we where interested in computing the Fourier
coefficients of a vector k ∈ K+ 	 H. To present the results (1.25) in a nice form, we will use a
contractive analytic function.
First note that, as we have already observed, U+|K+ 	H is a unilateral shift with wandering

space 0⊕DT ⊕ 0⊕ . . .. Hence, the operator X : H2(DT )→ K+ 	H defined by

X
∑
n≥0

zndn = (0, d0, d1, . . .)

is a unitary which transforms the operator Mz in H2(DT ) into the operator U+|K+ 	 H (i.e,
XMz = U+X).
Consider the operator Q = Z+X : H2(DT )→ H2(DT ∗). This operator is an isometry, and its

range is precisely QH2(DT ) = Z+(K+ 	H). Observe that, by the properties of Z+ and X, we
have

MzQ = MzZ+X = Z+U+X = Z+XMz = QMz.

Therefore, by Lemma 1.2, we see that there exists a contractive analytic function ΘT ∈ H∞(DT ,
DT ∗) such that Q is the operator of multiplication by ΘT . Since Q is an isometry, ΘT is inner.
To find an explicit formula for ΘT , we use (1.25). Let d ∈ DT , and denote also by d the function

in H2(DT ) which is constantly d. Then, if we put k = (0, d, 0, . . .) and define ln by (1.17),

ΘTd = Z+Xd = Z+(0, d, 0, . . .) =
∑
n≥0

znW ∗ln = −Td+
∑
n≥1

znDT ∗T
∗(n−1)DTd.

Hence,

ΘT (z) =

−T +
∑
n≥1

znDT ∗T
∗(n−1)DT

 ∣∣∣DT .

This series can be summed to obtain

ΘT (z) = [−T + zDT ∗(I − zT ∗)−1DT ]|DT .

The function ΘT (z) is called the characteristic function of T . We have seen that the subspace
K+	H is modelled by ΘTH

2(DT ), in the sense that Z+|K+	H is a unitary which maps K+	H
onto ΘTH

2(DT ).
Finally, it is also possible to compute the action of the operator T ∗ on the model space. Noting

that T ∗ = U∗+|H, it suffices to compute the action of U∗+ in the model space H2(DT ∗). However,
U+ acts as Mz on H2(DT ∗), so its adjoint is easily seen to act as the operator u 7→ z−1(u(z) −
u(0)).
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As we have already commented, for the case of a general contraction T , the model has to
take into account the unitary part of the minimal isometric dilation of T . We will only give
the statement of the theorem. A contraction T ∈ B(H) is called completely non-unitary if no
nontrivial subspace of H reduces T to a unitary operator. If T is a general contraction, then
it is a direct sum of a completely non-unitary contraction and a unitary, so there is no loss of
generality in constructing the model only for completely non-unitary contractions.

Theorem 1.11 (Sz.-Nagy–Foiaş). Let T be a completely non-unitary contraction on a separable
Hilbert space. Let ΘT be the characteristic function of T , defined as in Theorem 1.10. Put
∆(eit) = (I − ΘT (eit)∗ΘT (eit))

1
2 and denote by ∆ the operator of multiplication by ∆(eit) on

L2(DT ).
Put

K = L2(DT ∗)⊕∆L2(DT ), K+ = H2(DT ∗)⊕∆L2(DT ),

and
H = K+ 	 {ΘTu⊕∆u : u ∈ H2(DT )}.

Then T is unitarily equivalent to the operator T on H defined by

(T ∗(u, v))(z) =

(
u(z)− u(0)

z
, e−itv(eit)

)
, (u, v) ∈ H.

The minimal isometric dilation of T is the operator Mz ⊕ (Meit |∆L2(DT )) acting on the space
K+, and the minimal unitary dilation of T is the operator Meit ⊕ (Meit |∆L2(DT )) on the space
K.

We see that when ΘT is inner (which happens if and only if T is C·0), then ∆ = 0, so the
second component in all the model spaces collapses and we recover Theorem 1.10.

1.6. Invariant subspaces

As an application of the Sz.-Nagy–Foiaş model, we will give a characterization of the invariant
subspaces of a C0· contraction T in terms of the factorizations of the characteristic function of
its adjoint operator. We say that a contraction T is of class C0· if Tn → 0 strongly (i.e., if T ∗ is
C·0). This will also allow us to find the invariant subspaces of C·0 contractions.
Using the functional model for T ∗, we can assume that T is the operator M∗z acting on the

space H2(Y )	ΘH2(U ), where Θ ∈ H∞(U ,Y ) is some inner function. Now it is evident that
the invariant subspaces of T are precisely those of the form H2(Y ) 	 E, where E is a subspace
invariant for Mz and such that ΘH2(U ) ⊂ E. Indeed, a subspace H2(Y ) 	 E will be invariant
for M∗z if and only if E is invariant for Mz, and the condition ΘH2(U ) ⊂ E comes from the fact
that we are only interested in the invariant subspaces which are contained in H2(Y )	ΘH2(U ).
It is clear that if Θ1 ∈ H∞(U1,Y ) is an inner function, then the subspace Θ1H

2(U1) is
invariant for Mz. Moreover, if Θ can be factorized as Θ = Θ1Θ2, where Θ2 ∈ H2(U ,U1) is
another inner function, then Θ1H

2(U1) ⊃ ΘH2(U ). Hence, for every such factorization, we
obtain a corresponding invariant subspace for T . What we want to do now is to prove that all
the invariant subspaces for T can be obtained in this manner. The invariant subspaces for the
operator Mz on H2(Y ) are well known.

Theorem 1.12 (Beurling-Lax-Halmos). Let Y be a separable Hilbert space. A subspace E ⊂
H2(Y ) is invariant for the operator Mz of multiplication by z if and only if E is of the form
E = ΘH2(U ) for some inner function Θ ∈ H∞(U ,Y ).
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Proof. The proof is very similar to the construction of the characteristic function ΘT that we did
in the previous section.
Assume that E is invariant for Mz and put V = Mz|E. Then V is an isometry. Since Mz is a

unilateral shift, Theorem 1.9 implies that V is a unilateral shift, because⋂
n≥0

V nE ⊂
⋂
n≥0

Mn
z H

2(Y ) = 0.

Let U be the wandering space for V and define Q : H2(U )→ H2(Y ) by

Q
∑
n≥0

znun =
∑
n≥0

V nun.

Then Q is an isometry and QH2(U ) = E. Moreover, MzQ = QMz. By Lemma 1.2, there is a
Θ ∈ H∞(U ,Y ) such that Q = Θ. This Θ must be inner, because Q is an isometry.
The converse statement is clear.

Another proof, based on the Lax Theorem about the invariant subspaces of Meit in L2(Y )
can be found in [Nik02b, Corollary 2.1.7]. In the case when Y has dimension 1, this Theorem is
just the Beurling Theorem, which is well known in the theory of Hardy spaces (see, for instance,
[MAR07, Corollary 2.3.12] or [Nik02a, Corollary 1.4.1]).
Now we want to see that if Θ1H

2(U1) is some invariant subspace forMz such that Θ1H
2(U1) ⊃

ΘH2(U ), then we can factorize Θ as Θ1Θ2, where Θ2 is inner.

Lemma 1.13. If Θ ∈ H∞(U ,Y ) and Θ1 ∈ H∞(U1,Y ) are inner functions such that ΘH2(U ) ⊂
Θ1H

2(U1), then there is an inner function Θ2 ∈ H∞(U ,U1) such that Θ = Θ1Θ2.

Proof. Note that the equation

Θf = Θ1V f, f ∈ H2(U )

defines correctly an isometry V : H2(U )→ H2(U1). Also,

Θ1VMz = ΘMz = MzΘ = MzΘ1V = Θ1MzV.

Since Θ1 is an isometry, we get VMz = MzV . Applying Lemma 1.2 to V , we see that there exists
a contractive analytic function Θ2 ∈ H∞(U ,U1) such that V = Θ2. Since V is an isometry, Θ2

must be inner. This proves the Lemma.

Using this Lemma we can also prove that if Θ1H
2(U1) = Θ2H

2(U2) and Θ1,Θ2 are inner, then
Θ1 = Θ2Z, for some constant unitary Z ∈ H∞(U2,U1). Indeed, we get from the Lemma inner
functions Θ3 and Θ4 such that Θ1 = Θ2Θ3 and Θ2 = Θ1Θ4. We see that Θ1 = Θ1Θ4Θ3, and
since Θ1 is isometric, Θ4Θ3 = I. In particular, we have Θ4(0)Θ3(0) = I. Similarly, we also get
Θ3(0)Θ4(0) = I. Since Θ3(0) and Θ4(0) are contractions, this implies that they must be unitaries.
By Lemma 1.4, Θ3 and Θ4 are constant unitaries. The claim now follows, with Z = Θ3.
To sum up the results of this Section, we have proved the following Theorem.

Theorem 1.14. If T is a C0· contraction on a separable Hilbert space H, to each invariant
subspace F ⊂ H of T there corresponds a factorization ΘT ∗ = Θ1Θ2 of the characteristic function
of T ∗ as the product of two inner functions Θ1 ∈ H∞(U1,DT ) and Θ2 ∈ H∞(DT ∗ ,U1), such that
the subspace F is modelled by the subspace H2(DT )	Θ1H

2(U1) in the Sz.-Nagy–Foiaş model of
T ∗ given by Theorem 1.10.
Conversely, to every such factorization ΘT ∗ = Θ1Θ2 as product of inner functions, there corre-

sponds an invariant subspace F of T . Moreover, the identification of invariant subspaces F with
inner factors Θ1 is uniquely determined by F up to a constant unitary factor on the right.
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Indeed, from the work done in this section, it is not hard to see how the lattice of invariant
subspaces of T and the lattice of factorizations of ΘT ∗ are isomorphic in some sense (which can
be made precise).
It is worthy to mention that, after multiplication by a suitable nonzero scalar, every operator T

can be assumed to be a C0· contraction. Hence, in principle, the study of the invariant subspaces
could be reduced to the study of factorizations of inner functions. However, this topic is not
very well understood. The Theorem is most useful when, for instance, the defect space DT is
finite dimensional, and hence the study of factorizations of ΘT ∗ corresponds to factorizations of
matrices.
Noting again that, if T ∈ B(H), a subspace F ⊂ H is invariant for T if and only if H 	 E is

invariant for T ∗, it is easy to use the preceding Theorem to obtain the invariant subspaces of a
C·0 contraction.

Theorem 1.15. If T is a C·0 contraction on a separable Hilbert space H, to each invariant
subspace F ⊂ H of T there corresponds a factorization ΘT = Θ1Θ2 of the characteristic function
of T as the product of two inner functions Θ1 ∈ H∞(U1,DT ∗) and Θ2 ∈ H∞(DT ,U1), such that
the subspace F is modelled by the subspace Θ1H

2(U1)	ΘTH
2(DT ) in the Sz.-Nagy–Foiaş model

of T given by Theorem 1.10.
Conversely, to every such factorization ΘT = Θ1Θ2 as product of inner functions, there corre-

sponds an invariant subspace F of T , and Θ1 is determined by F up to a constant unitary factor
on the right.
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2. Dilations of several operators

In the preceding chapter, we have considered dilations of a single operator. This chapter deals
with the generalization of the concept of dilation to tuples of commuting operators. The key
fact in this chapter is that, in contrast to the single operator case, a unitary dilation for a tuple
of three or more commuting contractions need not exist. The reasons behind the existence or
non-existence of the dilation are not completely understood.
First, we prove the Commutant Lifting Theorem, which is related to the topic of this chapter,

and give an application to the Nevanlinna-Pick interpolation problem. Then we give Andô’s
Theorem, which states that a unitary dilation of a pair of commuting contractions always exists.
We treat other related topics, such as dilations of isometries, the theory of regular dilations, and
von Neumann’s inequality. We also give the main examples of non-existence of a dilation that
can be found in the literature. Finally, we give a positive existence result by Lotto.
Many of the results of this section can be found in the books [SNFBK10,FF90]. Also, the book

by Agler and McCarthy [AM02] contains a good exposition (see especially Chapter 10).

2.1. The Commutant Lifting Theorem

The Commutant Lifting Theorem deals with the description of the operators which commute with
a given contraction, in terms of operators commuting with its minimal isometric dilation. The
theorem can also be formulated for operators intertwining two contractions, as we will do. This
version is not more general, as the statement involving intertwining can be obtained easily from
the one involving commutants. However, it gives a more transparent proof of the theorem.

Theorem 2.1 (Commutant Lifting Theorem). Let T ∈ B(H), T ′ ∈ B(H ′) be two contractions,
and U+ ∈ B(K+), U ′+ ∈ B(K ′+) their respective minimal isometric dilations. If A ∈ B(H ′, H)
satisfies the intertwining relationship

TA = AT ′, (2.1)

then there is an operator B ∈ B(K ′+,K+) which is a lifting of A, and is such that

U+B = BU ′+ (2.2)

and ‖A‖ = ‖B‖.

Proof. We will first deal with the case when T ′ = V is an isometry, so that U ′+ = V . Without
loss of generality, we can assume that ‖A‖ = 1 (the case A = 0 is trivial). We also assume that
U+ acts on the space K+ = H ⊕ (

⊕
n≥1 DT ) and is given by the matrix

U+ =


T 0 0 · · ·
DT 0 0 · · ·
0 I 0 · · ·
0 0 I · · ·
...

...
...

. . .

 .
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2. Dilations of several operators

(See the proof of Theorem 1.5). An operator B ∈ B(H ′,K+) which is a lifting of A will have the
matrix form

B =
[
A∗ B∗1 B∗2 · · ·

]∗
,

where Bn are operators in B(H ′,DT ). Since clearly ‖B‖ ≥ ‖A‖ = 1, the condition ‖A‖ = ‖B‖
will be satisfied if and only if B is a contraction.
Writing condition (2.2) in matrix form, using (2.1) and equating matrix components, we see

that (2.2) is equivalent to

DTA = B1V, Bn = Bn+1V, n ≥ 1. (2.3)

Hence, we must construct a sequence of operators Bn which satisfy (2.3) and such that the
resulting operator B is a contraction.
To simplify the notation, we define

B0 = DTA.

We will now construct by induction a sequence {Bn}∞n=0 which satisfies the following conditions:

BNV = BN−1, N ≥ 1, (I)

A∗A+

N∑
n=1

B∗nBn ≤ I, N ≥ 0, (II)

and
B∗NBN ≤ V ∗D2

NV, N ≥ 0, (III)

where

DN =

(
I −A∗A−

N∑
n=1

B∗nBn

) 1
2

,

which is correctly defined by (II). Condition (I) comes directly from (2.3), condition (II) will
ensure that

B∗B = A∗A+
∞∑
n=1

B∗nBn ≤ I,

so that B is a contraction, and condition (III) is auxiliary and will be used to construct BN+1

from BN . Indeed, for N ≥ 1, (III) can be derived from (I), (II) and the definition of B0 alone,
as we will show. Once we have built such a sequence {Bn}∞n=0, the operator B will have all the
required properties.
First we check that the conditions are satisfied, for N = 0, by the operator B0 = DTA.

Condition (I) is vacuous. Condition (II) amounts to A∗A ≤ I, which is true because ‖A‖ = 1. To
check condition (III), we compute

B∗0B0 = A∗D2
TA = A∗A−A∗T ∗TA = A∗A− V ∗A∗AV ≤ I − V ∗A∗AV = V ∗D2

0V.

Here we have used (2.1) and the fact that V ∗V = I because V is an isometry.
Now assume that we have constructed operators B0, . . . , BN satisfying (I)–(III). Condition

(III) implies that ‖BNh‖ ≤ ‖DNV h‖ for all h ∈ H ′. Hence there exists a contraction CN from
the linear manifold DNV H

′ into DT such that

BN = CNDNV. (2.4)
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2. Dilations of several operators

This contraction can be extended by continuity to DNV H ′ and then to all H ′ by defining it to
be zero on H ′ 	DNV H ′. This extension, which we will continue to call CN is still a contraction
and satisfies (2.4).
It is clear from (I) that we can now define

BN+1 = CNDN .

We must check that with this election of BN+1, conditions (II) and (III) for N + 1 are satisfied.
To check (II), we compute

A∗A+
N+1∑
n=1

B∗nBn = I −D2
N +B∗N+1BN+1 = I −D2

N +DNC
∗
NCNDN ≤ I,

where the last inequality is true because CN is a contraction.
Now we check that condition (III) for N + 1 is satisfied. As we said before, we will derive this

fact from (I), (II) and the definition of B0 alone, without using the specific form in which we
constructed BN+1. We compute

V ∗(I −D2
N+1)V = V ∗A∗AV +

N+1∑
n=1

V ∗B∗nBnV = V ∗A∗AV +

N∑
n=0

B∗nBn.

Here we have used (I) in the last equality. Since

V ∗A∗AV +B∗0B0 = V ∗A∗AV +A∗D2
TA = V ∗A∗AV +A∗A−A∗T ∗TA = A∗A,

we get V ∗(I − D2
N+1)V = I − D2

N . This implies V ∗D2
N+1V = D2

N , because V is an isometry.
Finally, we see that (III) for N + 1 is true because D2

N −B∗N+1BN+1 = D2
N+1 ≥ 0 (note that here

we used (II) to see that DN+1 is correctly defined).
This finishes the proof of the case when T ′ is an isometry. If T ′ is not an isometry, note that

TAPH′ = AT ′PH′ = APH′U
′
+,

because the minimal isometric dilation U ′+ of T ′ is indeed a lifting of T ′ (here PH′ denotes the
orthogonal projection onto H ′). Hence, we can apply the previous case to the isometry U ′+ instead
of T ′ and the operator APH′ instead of A to obtain an operator B which is a lifting of APH′ and
satisfies (2.2) and ‖B‖ = ‖APH′‖. This operator B will do the job, because ‖APH′‖ = ‖A‖, and
since APH′ is a lifting of A, it follows that B is a lifting of A.

It is now easy to generalize the Theorem to allow for arbitrary isometric dilations of the con-
tractions T and T ′. This is useful in the applications.

Corollary 2.2. Let T ∈ B(H), T ′ ∈ B(H ′) be two contractions, and V ∈ B(K), V ′ ∈ B(K ′) two
isometric dilations respectively. If A ∈ B(H ′, H) satisfies the intertwining relationship

TA = AT ′,

then there is an operator B ∈ B(K ′,K) which is a lifting of A and such that

V B = BV ′

and ‖A‖ = ‖B‖. In particular, this holds when V and V ′ are the minimal unitary dilations of T
and T ′ respectively.
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2. Dilations of several operators

Proof. As we already commented on the proof of Theorem 1.5, if we put K+ =
∨
n≥0 V H, then

the isometry V has the structure

V =

[
U+ ∗
0 ∗

]
,

according to the decomposition K = K+⊕ (K	K+), where U+ is the minimal isometric dilation
of T . The isometry V ′ has an analogous structure if we define K ′+ =

∨
n≥0 V

′H ′,. If we denote
by B+ ∈ B(K ′+,K+) the lifting of A obtained in the preceding Theorem, it is easy to check that
the operator

B =

[ K′+ K′	K′+
K+ B+ 0

K	K+ 0 0

]
satisfies the needed properties.

2.2. An application: Nevanlinna-Pick interpolation

As an application of the Commutant Lifting Theorem, we will show how it can be used to solve
the classical Nevanlinna-Pick interpolation problem. Given a finite number of distinct points
{αj}nj=1 in D, and another set of points {βj}nj=1 ⊂ D (not necessarily distinct), the problem asks
to construct (if it is possible) a function f ∈ H∞(D) with ‖f‖H∞(D) ≤ 1 and f(αj) = βj , for
1 ≤ j ≤ n.

Theorem 2.3. The Nevanlinna-Pick interpolation problem has a solution if and only if the matrix[
1− βjβk
1− αjαk

]n
j,k=1

(2.5)

is non-negative.

Proof. Let us start by defining operators X,Y ∈ B(Cn, H2(D)) by the matrices

X =


1 1 · · · 1
α1 α2 · · · αn
α2

1 α2
2 · · · α2

n
...

...
...

...

 , Y =


β1 β2 · · · βn
β1α1 β2α2 · · · βnαn
β1α

2
1 β2α

2
2 · · · βnα

2
n

...
...

...
...

 .
(Here we use the orthonormal basis in H2(D) given by the monomials 1, z, z2, . . .). Note that X
and Y are bounded because |αj | < 1.
Given a function f ∈ H∞(D), we define f̃ ∈ H∞(D) by f̃(z) = f(z). We put Z = M∗

f̃
∈

B(H2(D)), where M
f̃
denotes the operator of multiplication by f̃ in H2(D). Observe that if

f(z) =
∑

n≥0 anz
n is the power series representation of f , then the matrix representation of the

operator Z is

Z =


a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...
. . .

 . (2.6)
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2. Dilations of several operators

Hence, we see that

ZX =


f(α1) f(α2) · · · f(αn)
α1f(α1) α2f(α2) · · · αnf(αn)
α2

1f(α1) α2
2f(α2) · · · α2

nf(αn)
...

...
...

...

 .
This shows that f satisfies f(αj) = βj , for 1 ≤ j ≤ n, if and only if ZX = Y .
Also, ‖Z‖ = ‖M

f̃
‖ = ‖f̃‖H∞(D) = ‖f‖H∞(D), so that ‖f‖H∞(D) ≤ 1 if and only if Z is a

contraction. Therefore, we are interested in the existence of contractive solutions Z of ZX = Y
having the form (2.6).
Assume that the interpolation problem has a solution, so that such a Z exists. Then we see

that Y ∗Y ≤ X∗X, or equivalently, X∗X − Y ∗Y ≥ 0. A computation reveals that the matrix
X∗X − Y ∗Y is precisely (2.5).
Conversely, assume that X∗X ≥ Y ∗Y . We will use the Commutant Lifting Theorem to con-

struct a solution of the interpolation problem. We define the diagonal matrix Λ, which has the
diagonal [α1, . . . , αn]. Note that

M∗zX = XΛ, M∗z Y = Y Λ, (2.7)

where Mz is the operator of multiplication in by the independent variable z in H2(D).
Let us put H = XH2(D). Since, X∗X ≥ Y ∗Y , there is a contraction C ∈ B(H,H2(D)) such

that Y = CX. We have

M∗zCX = M∗z Y = Y Λ = CXΛ = CM∗zX.

Equation (2.7) shows that H is invariant for M∗z . Hence, we see that

M∗zC = CM∗z |H.

Taking adjoints and noting that (M∗z |H)∗ = PHMz|H, we get

C∗Mz = (PHMz|H)C∗.

Observe that Mz is an isometric lifting of the contraction PHMz|H, because H is invariant for
M∗z . Hence, we can apply Corollary 2.2 with T = PHMz|H, T ′ = Mz, A = C∗, V = Mz, and
V ′ = Mz to obtain a contraction B ∈ B(H2(D)) which is a lifting of C∗ and such that

BMz = MzB.

By Lemma 1.2, there is a function g ∈ H∞(D) with ‖g‖H∞(D) ≤ 1 such that B = Mg. Since
B is a lifting of C∗, then C = B∗|H. Hence, we see that Y = B∗X. Finally, it is enough to
note that if we put f = g̃, then Z = B∗, so that this function f is a solution of the interpolation
problem.

2.3. Extensions, liftings and dilations

The purpose of this section is to generalize the terminology of Section 1.1 to the context of several
commuting operators.
We say that a set of operators T = {Tj}j∈J ⊂ B(H) is a system of commuting operators if all

the operators Tj commute, i.e., if TjTk = TkTj for all j, k ∈ J .
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2. Dilations of several operators

The generalization of extensions and liftings is straightforward. If T = {Tj}j∈J ⊂ B(H) is a sys-
tem of commuting operators, we say that V = {Vj}j∈J ⊂ B(K) is a commuting extension/lifting
of this system if the operators Vj commute and each operator Vj is an extension/lifting of the
operator Tj .
We say that V is a dilation of T if the operators Vj commute and

T k1j1 · · ·T
kn
jn

= PHV
k1
j1
· · ·V kn

jn
|H,

for every election of j1, . . . , jn ∈ J and k1, . . . , kn ≥ 1. Note that, in contrast with the case of
extensions and liftings, this condition is stronger than asking each operator Vj to be a dilation of
Tj . However, it is easy to check that if V is either an extension or a lifting of T , then it is also a
dilation.
We say that the extension/lifting/dilation V is isometric/unitary if each operator Vj ∈ V is

isometric/unitary.
If U = {Uj}j∈J ⊂ B(K) is a dilation of T = {Tj}j∈J ⊂ B(H), applying Lemma 1.1 to
A = C[zj ; j ∈ J ], the algebra of polynomials in variables zj , j ∈ J , and the map ϕ given by
ϕ(p) = p({Uj}), we see that the space K decomposes as K = H2 ⊕H ⊕ (K 	H1), and that each
operator Uj has the structure

Uj =

∗ ∗ ∗
0 Tj ∗
0 0 ∗


with respect to this decomposition. Hence, if we define K+ = H2 ⊕H, then K+ is invariant for
every Uj and the operators Vj = Uj |K+ are a lifting of T .
If U was a unitary dilation of T , this construction produces an isometric lifting V of T . Con-

versely, in Section 2.5 we will show how every system of commuting isometries can be extended
to a system of commuting unitaries. Therefore, the problems of finding an isometric lifting of a
given system of contractions T and a unitary dilation of the same system T can be thought to be
equivalent.

2.4. Dilations of a pair of operators: Andô’s theorem

Andô’s Theorem was the first achievement in the theory of simultaneous dilations of contractions.
It shows that every pair of commuting contractions has a commuting isometric lifting and a
commuting unitary dilation. The usual proofs of the theorem limit to show the existence of the
isometric lifting. It is known that an arbitrary system of commuting isometries can be dilated to
a commuting system of unitaries, so the existence of the unitary dilation follows from this fact.
We will prove the theorem about the unitary dilation of a system of isometries in Section 2.5
below.

Theorem 2.4 (Andô’s Theorem). Every pair of commuting contractions T1, T2 ∈ B(H) has a
commuting isometric lifting V1, V2 and a commuting unitary dilation U1, U2.

We will give several proofs of Andô’s Theorem. The first one shows that it can be obtained
as a corollary of the Commutant Lifting Theorem. It is remarkable that with this proof one can
construct the unitary dilation by the same means as the isometric lifting.

Proof using the Commutant Lifting Theorem. Since T1T2 = T2T1, we can use the Commutant
Lifting Theorem to obtain a contractive lifting B of T2 such that U+B = BU+, where U+ ∈ B(K+)
is the minimal isometric dilation of T1. Let V2 ∈ B(K) be the minimal isometric dilation of B.
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2. Dilations of several operators

Applying the Commutant Lifting Theorem again, we get a contractive lifting V1 of U+ such that
V1V2 = V2V1. Note that V1 is a lifting of T1 and V2 is a lifting of T2. It remains to see that V1 is
an isometry.
Observe that V1 ∈ B(K) is a contractive lifting of the isometry U+. It follows that K+ is

invariant for V1 and V1|K+ = U+ (note that PK	K+V1|K+ = 0 because V1 is contractive and
PK+V1|K+ = U+ is an isometry). Now, if k ∈ K+ and n ≥ 0,

‖V1V
n

2 k‖ = ‖V n
2 V1k‖ = ‖V1k‖ = ‖U+k‖ = ‖k‖ = ‖V n

2 k‖.

This shows that DV1V
n

2 K+ = 0, where DV1 is the defect operator of V1. Since V2 is the minimal
isometric dilation of B, we have K =

∨
n≥0 V

n
2 K+, so this implies that DV1 = 0. Hence, V1 is an

isometry and the first part of the Theorem is proved.
To prove the existence of the commuting unitary dilation, one follows the same reasoning,

replacing U+ by a unitary dilation U of T1, V2 by the minimal unitary dilation U2 of B, using
Corollary 2.2 instead of Theorem 2.1, and denoting by U1 the lifting obtained from U in the second
application of the Commutant Lifting Theorem. Then one has to check that U1 is a unitary. An
argument similar to the one applied to V1 suffices (one should prove that DU1 = DU∗1

= 0).

The Commutant Lifting Theorem can also be obtained as a Corollary of Andô’s Theorem, and
we will now show this.

Proof of Theorem 2.1 using Theorem 2.4. We can assume without loss of generality that ‖A‖ = 1.
Put

T1 =

[
T 0
0 T ′

]
, T2 =

[
0 A
0 0

]
,

and note that T1 and T2 are commuting contractions. By Theorem 2.4, there is a commuting
isometric lifting V1, V2 of T1, T2.
Since T1 is a lifting of T , we see that V1 is an isometric lifting of T1. By Lemma 1.6, it follows

that if we put K+ =
∨
n≥0 V

n
1 H, then K+ reduces V1 and U+ = V1|K+ is the minimal isometric

dilation of T . Similarly, if K ′+ =
∨
n≥0 V

n
1 H

′, then U ′+ = V1|K ′+ is the minimal isometric dilation
of T ′.
We define B = PK+V2|K ′+. Then B is a contraction. Since V2 is a lifting of T2, we have

PH⊕H′V2 = T2PH⊕H′ . Hence,

PHB = PHV2|K ′+ = PHT2PH⊕H′ = APH′ .

This shows that B is a lifting of A. As a consequence, 1 = ‖A‖ ≤ ‖B‖ ≤ 1, so that ‖B‖ = ‖A‖.
Since K+ reduces V1, we have V1PK+ = PK+V1. Using this, we compute

U+B = V1PK+V2|K ′+ = PK+V1V2|K ′+ = PK+V2V1|K ′+ = PK+V2U
′
+ = BU ′+.

This shows that B satisfies all the needed properties.

Now we will give two independent proofs of Andô’s Theorem. The main idea of both of them is
similar: to construct certain liftings W1 and W2 of T1 and T2 respectively and define V1 = UW1,
V2 = W2U

∗, where U is some unitary that has to be chosen to make V1 and V2 commute. However,
the construction of the isometric liftings and the unitary in both proofs is quite different.
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2. Dilations of several operators

First independent proof of Theorem 2.4. The proof proceeds in several steps.
First we find isometric liftings W1,W2 of T1, T2 which act on the same space K. Let W ′j ∈
B(H ⊕Kj) be the minimal isometric lifting of Tj , for j = 1, 2. We define K = H ⊕K1 ⊕K2 and
the operators Wj by W1 = W ′1 ⊕ IK2 and W2 = IK1 ⊕W ′2. It is clear that Wj is an isometric
lifting of Tj .
Now we find isometric liftings X1, X2 acting on the same space and such that X1X2 is unitarily

equivalent to X2X1 by an unitary operator which is the identity on H. We will use the symbol ∼=
to denote unitary equivalence by a unitary operator which is the identity on H. Note that both
W1W2 and W2W1 are isometric liftings of T1T2 = T2T1. Indeed,

PHW1W2 = T1PHW2 = T1T2PH ,

so that W1W2 is a lifting of T1T2, and similarly, W2W1 is also a lifting of T1T2. Let W0 be the
minimal isometric dilation of T1T2. Using Lemma 1.6, we see that

W1W2
∼= W0 ⊕W12, W2W1

∼= W0 ⊕W21,

where W12 and W21 are isometries acting on the spaces H12 and H21 respectively. Now we define
the operators X1 and X2 on the space K ⊕ [

⊕
n≥1(H12 ⊕H21)] by

X1 = W1 ⊕ [
⊕
n≥1

(IH12 ⊕ IH21)], X2 = W2 ⊕ [
⊕
n≥1

(W12 ⊕W21)],

It is clear that X1 and X2 are isometric liftings of T1 and T2 respectively. Now we compute

X1X2 = W1W2 ⊕ [
⊕
n≥1

(W12 ⊕W21)] ∼= W0 ⊕W12 ⊕ [
⊕
n≥1

(W12 ⊕W21)],

X2X1 = W2W1 ⊕ [
⊕
n≥1

(W12 ⊕W21)] ∼= W0 ⊕W21 ⊕ [
⊕
n≥1

(W12 ⊕W21)].

It follows that X1X2
∼= X2X1.

By the previous step, there is a unitary U which is the identity on H and such that X1X2 =
UX2X1U

∗. We put V1 = X1U
∗, V2 = UX2. We see that V1, V2 are commuting isometries.

Moreover, since U is the identity on H, we have PHU = PHU
∗ = PH , so we see that

PHV1 = PHX1U
∗ = T1PHU

∗ = T1PH ,

which shows that V1 is a lifting of T1. Similarly, V2 is a lifting of T2.
As we have remarked before the statement of Andô’s Theorem, the existence of U1, U2 now

follows from Theorem 2.5 below.

Second independent proof of Theorem 2.4. We put K =
⊕

n≥0H, embed H into K by h 7→
(h, 0, . . .) and define the operators W1,W2 ∈ B(K) by

Wj(h0, h1, h2, . . .) = (Tjh0, DTjh0, 0, h1, h2, . . .), j = 1, 2.

These operators are isometric, but they do not commute in general.
We define the space G = H ⊕H ⊕H ⊕H. By the identification

(h0, h1, h2, . . .) = (h0, (h1, h2, h3, h4), (h5, h6, h7, h8), . . .)
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2. Dilations of several operators

we have
K = H ⊕ (

⊕
n≥1

G).

Let U be an unitary operator on G to be determined later. We define the unitary operator X
on K by

X(h0, h1, h2, . . .) = (h0, U(h1, . . . , h4), U(h5, . . . , h8), . . .).

We define V1 = XW1, V2 = W2X
∗ and try to find a U such that V1 and V2 commute. Note that

this will suffice, because V1 and V2 are isometries and we can check that they are liftings of T1

and T2 respectively in the same way as we did in the first proof of Theorem 2.4.
We first compute V1V2 and V2V1.

V1V2(h0, h1, . . .) = XW1W2X
∗(h0, h1, . . .) = XW1W2(h0, U

∗(h1, . . . , h4), . . .)

= XW1(T2h0, DT2h0, 0, U
∗(h1, . . . , h4))

= X(T1T2h0, DT1T2h0, 0, DT2h0, 0, U
∗(h1, . . . , h4))

= (T1T2h0, U(DT1T2h0, 0, DT2h0, 0), (h1, . . . , h4), . . .).

V2V1(h0, h1, . . .) = W2W1(h0, h1, . . .) = W2(T1h0, DT1h0, 0, h1, . . .)

= (T2T1h0, DT2T1h0, 0, DT1h0, 0, h1, . . .).

Hence, the operator U must satisfy

U(DT1T2h0, 0, DT2h0, 0) = (DT2T1h0, 0, DT1h0, 0). (2.8)

We see that

‖DT1T2h0‖2 + ‖DT2h0‖2 = ‖T2h0‖2 − ‖T1T2h0‖2 + ‖h0‖2 − ‖T2h0‖2

= ‖h0‖2 − ‖T1T2h0‖2.

Similarly,

‖DT2T1h0‖2 + ‖DT1h0‖2 = ‖h0‖2 − ‖T2T1h0‖2 = ‖DT1T2h0‖2 + ‖DT2h0‖2.

This shows that (2.8) defines an isometry U from the linear manifold L1 = DT1T2H⊕0⊕DT2H⊕0
onto the linear manifold L2 = DT2T1H ⊕ 0⊕DT1H ⊕ 0. By continuity, it extends to an isometry
from L1 onto L2. It remains to see that it can be extended to an isometry from G onto G. This
is equivalent to the condition dimG	L1 = dimG	L2. When the dimension of H is finite, then
the dimension of G is also finite and this condition clearly holds. When H is infinite-dimensional,

dimH = dimG ≥ dimG	 Lj ≥ dimH, j = 1, 2,

because G	 Lj contains the subspace 0⊕H ⊕ 0⊕ 0. This shows that the dimensions of G	 L1

and G	 L2 coincide, and therefore, finishes the proof.

2.5. Dilations of a system of isometries

The existence of a unitary dilation for a system of commuting isometries is one of the easiest
positive results for tuples of operators. The key fact in obtaining the dilation is a procedure
which, when applied to the system of isometries, decreases the number of non-unitary isometries
in the system. By iterating this procedure several times, one finally obtains a system composed
exclusively of unitaries.
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2. Dilations of several operators

Theorem 2.5. Any system of commuting isometries V = {Vj}j∈J has an extension to a com-
muting system of unitaries V = {Uj}j∈J .

Proof. When the system is finite, it suffices to apply the following Lemma 2.6 a finite number of
times. When the system is infinite, one could use also apply Lemma 2.6 a transfinite number of
times, but we will also give a proof that does not require transfinite induction using the theory
of regular dilations in Section 2.7.

Lemma 2.6. If {V } ∪ {Vj}j∈J is a system of commuting isometries on H, then there is a com-
muting system {U} ∪ {Wj}j∈J of operators on K such that U is unitary extension of V , each Wj

is an isometric extension of Vj, and if Vj was unitary then Wj is still unitary.

Proof. Let U ∈ B(K) be the minimal unitary extension of the isometry V , so thatK =
∨
n∈Z U

nH.
If n,m ∈ Z, n ≥ m, and h, h′ ∈ H, we have

〈UnVjh, UmVjh′〉 = 〈Un−mVjh, Vjh′〉 = 〈V n−mVjh, Vjh
′〉 = 〈VjV n−mh, Vjh

′〉
= 〈V n−mh, h′〉 = 〈Unh, Umh′〉,

because U is an extension of V , the operators V and Vj commute, and Vj is an isometry. This
shows that

WjU
nh = UnVjh, n ∈ Z, h ∈ H,

defines an isometry on K which extends Vj . If Vj was unitary, then VjH = H, so we see that
WjK = K, and therefore Wj is unitary.
It remains to see that all the operators U,Wj commute. If n ∈ Z and h ∈ H, then

UWjU
nh = Un+1Vjh = WjU

n+1h = WjUU
nh,

so that U and Wj commute. If j, j′ ∈ J , then

WjWj′U
nh = UnVjVj′h = UnVj′Vjh = Wj′WjU

nh,

so that Wj and Wj′ commute.

2.6. Von Neumann’s inequality

The most basic form of von Neumann’s inequality states that if T ∈ B(H) is a contraction, then

‖p(T )‖ ≤ ‖p‖∞, (2.9)

where p ∈ C[z] is any complex polynomial and ‖p‖∞ = supz∈D |p(z)|. The proof of this inequality
using dilations is very easy. Let U ∈ B(K) be a unitary dilation of T and observe that p(T ) =
PHp(U)|H for p ∈ C[z]. Therefore,

‖p(T )‖ = ‖PHp(U)|H‖ ≤ ‖p(U)‖ ≤ ‖p‖∞.

Here the last inequality comes from the spectral theorem (see Appendix A.2).
There is also a version of the inequality for matrix-valued polynomials. This version will be

important because of its relation with the existence of a dilation. We will denote by Ms the ring
of s × s complex matrices. If A = [ajk]

s
j,k=1 ∈ Ms is a matrix and T ∈ B(H) is an operator,

we let Hs be the direct sum of s copies of H and define the operator A ⊗ T ∈ B(Hs) by the
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2. Dilations of several operators

matrix [ajkT ]sj,k=1. This allows us to define p(T ) for p ∈ Ms[z], a matrix valued polynomial. If
p(z) =

∑n
j=1Ajz

j , we put p(T ) =
∑n

j=1Aj ⊗ T j .
In this context, von Neumann’s inequality is expressed again as (2.9). Now, p ∈ Ms[z]

is a matrix-valued polynomial, ‖p(T )‖ is the operator norm of p(T ) in B(Hs), and ‖p‖∞ =
supz∈D ‖p(z)‖, where ‖p(z)‖ is the norm of the matrix p(z) seen as an operator in B(Cs). The
proof of the matrix-valued inequality is more or less the same as the scalar-valued one. One just
has to take a bit of care with the notation involving matrices. If p ∈Ms[z], it can also be written
as p(z) = [pjk(z)]

s
j,k=1, where pjk ∈ C[z] are scalar-valued polynomials. Then,

‖p(T )‖ = ‖[pjk(T )]sj,k=1‖ = ‖[PHpjk(U)|H]sj,k=1‖
≤ ‖[pjk(U)]sj,k=1‖ = ‖p(U)‖ ≤ ‖p‖∞.

Once again, the last inequality comes from the spectral theorem, which is easily seen to work for
matrix-valued functions.
One can also ask whether the following generalization of the inequality (2.9) holds for tuples of

commuting contractions T1, . . . , Tn ∈ B(H):

‖p(T1, . . . , Tn)‖ ≤ ‖p‖∞. (2.10)

Here, depending on whether we are considering the scalar-valued inequality or the matrix-valued
inequality, either p ∈ C[z1, . . . , zn] will be a scalar-valued polynomial in n variables or p ∈
Ms[z1, . . . , zn] will be a matrix-valued polynomial in n variables. The norm ‖p‖∞ is defined
by taking the supremum of ‖p(z1, . . . , zn)‖ when (z1, . . . , zn) ranges over the polydisk Dn (the
cartesian product of n copies of D). This inequality (2.10) is also called von Neumann’s inequal-
ity.
Whenever the tuple T1, . . . , Tn has a unitary dilation U1, . . . , Un ∈ B(K), von Neumann’s

inequality holds for this tuple of contractions. The proof is very similar to the case of a single
contraction, because the key fact we need to use is p(T1, . . . , Tn) = PHp(U1, . . . , Un)|H, which
holds because of the properties of the dilation. Thus, if T1, . . . , Tn has a unitary dilation, both
the scalar and the matrix-valued inequalities hold for this tuple.
If the tuple T1, . . . , Tn does not have a unitary dilation, then (2.10) may or may not hold.

Indeed, both the scalar and the matrix-valued version may fail, or it could happen that the scalar
version holds but the matrix-valued version fails (the matrix-valued version is obviously stronger).
Examples of this will be mentioned in Section 2.8. However, if the matrix-valued version holds,
then a unitary dilation exists. This is a consequence of a theorem due to Arveson which uses the
theory of C∗-algebras. In the remaining part of this section, we will present the material needed
to give this result.
A complex algebra A, together with a norm ‖ · ‖ on A, is called a Banach algebra if it is a

Banach space with respect to this norm, and the norm satisfies ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A.
If the algebra has a unit e, then it is required that ‖e‖ = 1.
A C∗-algebra A is a Banach algebra together with a map x 7→ x∗, x ∈ A, which is conjugate-

linear and satisfies x∗∗ = x and (xy)∗ = y∗x∗, and the so called C∗ identity: ‖x∗x‖ = ‖x‖‖x∗‖.
The map ∗ is usually called the involution of the C∗-algebra.
A subalgebra B of a C∗-algebra A is called closed if it is closed with respect to the norm, and

is called selfadjoint if x∗ ∈ B for all x ∈ B.
The canonical example of a C∗-algebra is B(H), for every Hilbert space H. Here the involution
∗ is the usual operator adjoint. Indeed, every C∗-algebra is isomorphic to a closed selfadjoint sub-
algebra of some B(H). Another important example of C∗-algebra is the space C(K) of continuous
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2. Dilations of several operators

complex-valued functions on some compact set K, together with the norm ‖f‖ = supx∈K |f(x)|
and the involution f∗(x) = f(x).
An algebra is called unital if it has a unit, and a map between two unital algebras is called

unital if it takes the unit of the first algebra to the unit of the second one.
A representation of a C∗-algebra A is a map π : A → B(H) for some Hilbert space H such that

π is a continuous homomorphism satisfying π(x∗) = π(x)∗ for every x ∈ A.
If A is a C∗-algebra, we will denote by Ms(A) the space of s × s matrices whose entries are

elements of A. It turns out that there is a unique norm in Ms(A) that turns it into a C∗-algebra.
The easiest way to think of this norm is to view A as a closed selfadjoint subalgebra of B(H) and
note that Ms(B(H)) ∼= B(Hs).
Suppose that we are given a linear submanifold B of a C∗-algebra A, another C∗-algebra C,

and a linear map θ : B → C. We can consider Ms(B), the linear submanifold of Ms(A) formed
by the matrices with entries on B. The map θ induces a linear map θs : Ms(B) → Ms(C) by
θs([xjk]

s
j,k=1) = [θ(xjk)]

s
j,k=1. The map θ is called a complete contraction if θs is a contraction for

each s = 1, 2, . . ..
Now we are ready to formulate the theorem about C∗-algebras that we are going to use.

Theorem 2.7. Let A be a unital C∗-algebra, B a subalgebra (not necessarily closed or selfadjoint)
of A. Let θ : B → B(H) be a unital homomorphism. Then the following are equivalent:

(i) There is a Hilbert space K containing H and a unital representation π : A → B(K) such
that

θ(x) = PHπ(x)|H, ∀x ∈ A.

(ii) The map θ is a complete contraction.

This Theorem is part of [AM02, Corollary 14.16], and this Corollary 14.16 is a direct conse-
quence of the theorem of Arveson on the extension of completely positive maps.
Now we will use the Theorem to prove the following result.

Theorem 2.8. Suppose that T1, . . . , Tn ∈ B(H) is a tuple of commuting contractions which
satisfies the von Neumann inequality

‖p(T1, . . . , Tn)‖ ≤ ‖p‖∞,

for every matrix-valued polynomial p ∈ Ms[z1, . . . , zn], s = 1, 2, . . .. Then the tuple has a com-
muting unitary dilation U1, . . . , Un ∈ B(K).

Proof. We put A = C(Tn) the C∗-algebra of continuous functions on the n-torus Tn, which is
the product of n copies of T = ∂D. Consider B = C[z1, . . . , zn] the algebra of polynomials in n
variables. By the maximum modulus principle, we have

‖p‖∞ = sup
z∈Dn

|p(z)| = sup
z∈Tn

|p(z)| = ‖p‖A, p ∈ B.

This shows that B is indeed a subalgebra of A and that the induced norm in B is just the norm
‖ · ‖∞.

Define the map θ : B → B(H) by θ(p) = p(T1, . . . , Tn). Then, the map

θs : Ms(C[z1, . . . , zn])→Ms(B(H)),
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2. Dilations of several operators

if one takes into account the isomorphisms Ms(C[z1, . . . , zn]) ∼= Ms[z1, . . . , zn] and Ms(B(H)) ∼=
B(Hs), can be regarded as the map θs(p) = p(T1, . . . , Tn), where p ∈ Ms[z1, . . . , zn] is a matrix-
valued polynomial. Therefore, the matrix-valued von Neumann’s inequality is equivalent to θ
being a complete contraction.
Since θ is a complete contraction, we get a representation π of A into B(K) as in Theorem 2.7.

We define Uj = π(zj). Note that z∗j zj = zjz
∗
j = 1 in A, because in Tn we have |zj | = 1. Since π

is unital,
U∗j Uj = π(zj)

∗π(zj) = π(z∗j zj) = π(1) = I.

Similarly, UjU∗j = I. This shows that Uj are unitary. Also,

UjUk = π(zj)π(zk) = π(zjzk) = π(zkzj) = π(zk)π(zj) = UkUj ,

so that Uj commute.
Finally, we have to check that U1, . . . , Un is a dilation of T1, . . . , Tn, but this follows from the

property θ(x) = PHπ(x)|H by letting x be a monomial x = zk11 · · · zknn .

2.7. Regular dilations

Regular dilations are a special kind of unitary dilations which are more well behaved. For in-
stance, the conditions under which a system of contractions has a regular dilation is completely
understood. Also, there is a notion of minimality for regular dilations, and the minimal regular
dilation is unique.
To give the definition of a regular dilation, we first need a bit of notation. Let T = {Tj}j∈J ⊂
B(H) be a system of commuting contractions and U = {Uj}j∈J ⊂ B(K), with K ⊃ H, a system
of commuting unitaries. We denote by ZJc the set of functions taking J to Z which have finite
support (i.e., which vanish except on a finite number of elements of J). Given a function n ∈ ZJc ,
we say that n ≥ 0 if n(j) ≥ 0 for all j ∈ J .
We define, for n ∈ ZJc ,

Un =
∏
j∈J

U
n(j)
j .

This product is well defined because n(j) = 0 except for a finite number of indices j ∈ J . If
n ≥ 0, we can also define

Tn =
∏
j∈J

T
n(j)
j .

We also define the functions n+, n− ∈ ZJc by n+(j) = max{n(j), 0}, and n−(j) = max{−n(j), 0}.
We say that U is a regular dilation of T if

(Tn
−

)∗Tn
+

= PHU
n|H, ∀n ∈ ZJc . (2.11)

Note that if we restrict (2.11) to only those n ∈ ZJc such that n ≥ 0, we obtain the usual condition
of a dilation. Hence, a regular dilation is a stronger concept.
To formulate the theorem about the existence of regular dilations, we need just another bit of

notation. If K is a finite subset of J , we denote by χK the characteristic or indicator function
of K. This means that χK(j) = 1 if j ∈ K, and χK(j) = 0 otherwise. Note that χK ∈ ZJc . We
denote by |K| the number of elements of K.
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2. Dilations of several operators

Theorem 2.9. Let T = {Tj}j∈J be a system of commuting contractions on some Hilbert space
H. The system T has a regular unitary dilation U = {Uj}j∈J in some larger Hilbert space K ⊃ H
if and only if

S(J0) =
∑
K⊂J0

(−1)|K|(TχK )∗(TχK ) ≥ 0 (2.12)

for every finite subset J0 ⊂ J .
Moreover, the dilation U can be taken to be minimal, in the sense that

K =
∨
n∈ZJc

UnH. (2.13)

The minimal regular unitary dilation is unique up to isomorphism.

The proof of the Theorem is a bit involved and uses the theory of positive functions defined on
groups and some lengthy computations involving combinatorics of subsets. We refer the reader
to [SNFBK10, Section I.9] for a good exposition of the topic.
However, the part about minimality and uniqueness is very easy to obtain. Note that if U

is any regular unitary dilation of T and one defines K̂ =
∨
n∈ZJc U

nH, then K̂ reduces all the
operators Uj and the system {Uj |K̂}j∈J is also a regular dilation of T . If U is minimal, (2.11)
implies that if h, h′ ∈ H and n, n′ ∈ ZJc , then the inner product

〈Unh, Un′h′〉 = 〈Un−n′h, h′〉 = 〈(T (n−n′)−)∗T (n−n′)+h, h′〉

is completely determined by the system T . This implies that any two minimal regular dilations
must be isomorphic.
Now we would like to investigate sufficient conditions under which the condition (2.12) appear-

ing in the Theorem holds. First we show that if the system T contains an isometry Tj0 , then
S(J0) = 0 for any finite subset J0 containing j0.
To see this, let J0 be any such subset and take a K ⊂ J0. Then K can be partitioned as

K = K0 ∪K1, where K0 ⊂ {j0} and K1 ⊂ K \ {j0}. Also, any such an election of K0 and K1

gives a subset K by K = K0 ∪K1. We have

(TχK )∗(TχK ) = (TχK1 )∗(TχK0 )∗TχK0TχK1 = (TχK1 )∗TχK1 ,

because TχK0 = I whenever K0 = ∅, and TχK0 is the isometry Tj0 whenever K0 = {j0}. Using
this decomposition to split the sum in (2.12), we get

S(J0) =
∑

K1⊂J0\{j0}

(−1)|K1|

 ∑
K0⊂{j0}

(−1)|K0|

 (TχK1 )∗TχK1 .

It suffices to observe that the expression in square brackets is 0.
We say that two operators A and B doubly commute if A commutes with both B and B∗

(which implies that B commutes with A and A∗). Assume that Jd is a subset of J0 such that
Tj and Tk doubly commute whenever j ∈ Jd and k ∈ J0, j 6= k. Put J ′0 = J0 \ Jd. Then, if
S(J ′0) ≥ 0, we also have S(J0) ≥ 0.
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2. Dilations of several operators

The proof of this fact just involves computing

S(J0) =
∑

Kd⊂Jd

∑
K′⊂J ′0

(−1)|Kd|+|K
′|(TχKd )∗(TχK′ )∗TχK′TχKd

=
∑
K′⊂J ′0

(−1)|K
′|(TχK′ )∗TχK′

∑
Kd⊂Jd

(−1)|Kd|
∏
j∈Kd

T ∗j Tj

=
∑
K′⊂J ′0

(−1)|K
′|(TχK′ )∗TχK′

∏
j∈Jd

(I − T ∗j Tj)

= S(J ′0)
∏
j∈Jd

(I − T ∗j Tj).

Here we have used that the operators with indices in Jd doubly commute with the rest to rearrange
them. Now, since each factor I −T ∗j Tj , j ∈ Jd, commutes with each other and with S(J ′0), we see
that if S(J ′0) ≥ 0, then S(J0) ≥ 0 also.
Another important fact is that if

∑
j∈J0 ‖Tj‖

2 ≤ 1, then S(J0) ≥ 0. To prove this, we will put
J0 = {j1, . . . , jr} and write Tn instead of Tjn for brevity. We define, for 0 ≤ k ≤ r and h ∈ H,
the quantity

ak(h) =
∑
K⊂J0
|K|=k

‖TχKh‖2.

For 1 ≤ k ≤ r, we have

ak(h) =
∑

1≤n1<...<nk≤r
‖Tn1 · · ·Tnkh‖

2 ≤
∑

1≤n1<...<nk≤r
‖Tnk‖

2‖Tn1 · · ·Tnk−1
h‖2

=
∑

1≤n1<...<nk−1≤r
‖Tn1 · · ·Tnk−1

h‖2
∑

nk−1<nk≤r
‖Tnk‖

2

≤
∑

1≤n1<...<nk−1≤r
‖Tn1 · · ·Tnk−1

h‖2 = ak−1(h).

Therefore,

〈S(J0)h, h〉 =
∑
K⊂J0

(−1)|K|‖TχKh‖2 =
r∑

k=0

(−1)kak(h) ≥ a0(h)− a1(h)

= ‖h‖2 −
r∑

n=1

‖Tnh‖2 ≥

(
1−

r∑
n=1

‖Tn‖2
)
‖h‖2 ≥ 0.

To sum up, we have proved the three following facts about the positivity of S(J0):

1. If Tj0 is an isometry and j0 ∈ J0, then S(J0) = 0.

2. Assume that Jd ⊂ J0 and Tj doubly commutes with Tk whenever j ∈ Jd and k ∈ J0, j 6= k.
If S(J0 \ Jd) ≥ 0, then S(J0) ≥ 0 also.

3. If
∑

j∈J0 ‖Tj‖
2 ≤ 1, then S(J0) ≥ 0.

The following Theorem is a straightforward consequence of these three facts.
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Theorem 2.10. Let T = {Tj}j∈J be a system of commuting contractions on some Hilbert space
H. Delete the isometries from T and call the remaining system T1. Delete from T1 those operators
which doubly commute with every other operator, and call the remaining system T2. If T2 has a
regular unitary dilation, then so does T .
In particular, T has a regular unitary dilation in any of the three following particular cases:

(a) T consists only of isometries.

(b) T consists only of doubly commuting contractions.

(c) T is countable and satisfies
∑

j∈J ‖Tj‖2 ≤ 1.

In the case (a) of this theorem, we obtain a unitary dilation {Uj} of a system of commuting
isometries {Vj}. It is easy to check that such a dilation must be indeed an extension (the proof
is the same as for the case of only one operator). Therefore, we have just obtained another proof
of Theorem 2.5.
Continuing with the topic of unitary extensions of a system of isometries, the theory of regular

dilations can also be used to obtain the following result regarding their uniqueness.

Proposition 2.11. Let V = {Vj}j∈J ⊂ B(H) be a system of commuting isometries. Every
unitary dilation U = {Uj}j∈J ⊂ B(K) of such a system V is also a regular dilation. In particular,
if U is minimal, in the sense that it satisfies (2.13), then U is unique up to isomorphism.

Proof. As we have already mentioned, U is indeed an extension of V , which means that Vj = Uj |H.
Therefore, U∗j is a lifting of V ∗j , so that PHU∗j = V ∗j PH . Using this, we see that, for indices
j1, . . . , jn ∈ J and positive numbers k1, . . . , kn, l1, . . . , ln ≥ 0, we have

PHU
∗k1
j1
· · ·U∗knjn

U l1j1 · · ·U
ln
jn
|H = V ∗k1j1

· · ·V ∗knjn
V l1
j1
· · ·V ln

jn
.

This implies that the dilation is regular.

2.8. Non-existence of dilations

In this section we will give several counterexamples that show that, for three or more commuting
contractions, a unitary dilation does not always exist. The usual way to give such a counterexam-
ple is using operators acting on a finite dimensional space (hence, represented as matrices). Then
there are several ways to prove that their dilation does not exist: to assume that a unitary dilation
exists and get to a contradiction, to show that they do not satisfy the scalar-valued von Neu-
mann’s inequality for a given polynomial, or to show that they do not satisfy the matrix-valued
von Neumann’s inequality for a given polynomial.
The first counterexample was given by Parrott in [Par70]. It was essentially as follows. Let H0

be a Hilbert space and choose three unitaries A1, A2, A3 ∈ B(H0) such that

A1A
∗
2A3 6= A3A

∗
2A1. (2.14)

For instance, take A2 = I and choose A1 and A3 to be two non-commuting unitaries.
Now we put H = H0 ⊕H0 and define the contractions T1, T2, T3 ∈ B(H) by

Tj =

[
0 0
Aj 0

]
, j = 1, 2, 3.
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We see that if j 6= k, then TjTk = TkTj = 0, so (T1, T2, T3) is a tuple of commuting contractions on
H. Assume that there are commuting unitaries U1, U2, U3 acting on a larger Hilbert space K ⊃ H
and such that Tj = PHUj |H (this will certainly happen if (T1, T2, T3) has a unitary dilation).
We compute

PHUj(h, 0) = Tj(h, 0) = (0, Ajh), h ∈ H0.

Since ‖Uj(h, 0)‖ = ‖(h, 0)‖ and ‖(0, Ajh)‖ = ‖h‖, we see that Uj(h, 0) = (0, Ajh). Now we can
compute

UlU
∗
kUj(h, 0) = UlU

∗
k (0, Ajh) = UlU

∗
k (0, AkA

∗
kAjh) = UlU

∗
kUk(A

∗
kAjh, 0)

= Ul(A
∗
kAjh, 0) = (0, AlA

∗
kAjh).

Since Uj are commuting unitaries, we have U1U
∗
2U3 = U3U

∗
2U1, which implies A1A

∗
2A3 = A3A

∗
2A1.

This contradicts (2.14).
Later, Kaijser and Varopoulos in an addendum to the paper [Var74], and Crabb and Davie

in [CD75], gave independently examples of commuting contractions on a finite Hilbert space for
which the scalar-valued von Neumann’s inequality fails. It is worthy to mention that the operators
constructed in the counterexample of Parrott do satisfy the scalar von Neumann’s inequality.
The example of Kaijser and Varopoulos is given in a five-dimensional Hilbert space H with

orthonormal basis {e, f1, f2, f3, h}. The commuting contractions T1, T2, T3 ∈ B(H) are defined by

Tje = fj , Tjfk = ajkh, Tjh = 0,

where ajj = 1/
√

3 and ajk = −1/
√

3 if j 6= k. Then, they consider the polynomial

p(z1, z2, z3) =
3∑

j,k=1

ajkzjzk

and show that ‖p(T1, T2, T3)‖ ≥ 3 but ‖p‖∞ = 5/
√

3.
The example of Crabb and Davie is given in an eight-dimensional Hilbert space H with or-

thonormal basis {e, f1, f2, f3, g1, g2, g3, h}. The commuting contraction T1, T2, T3 ∈ B(H) are
defined by

Tje = fj , Tjfj = −gj ,

for j 6= k,
Tjfk = gl,

where l 6= j and l 6= k, and
Tjgk = δjkh, Tjh = 0.

Then, they put
p(z1, z2, z3) = z1z2z3 − z3

1 − z3
2 − z3

3

and show that ‖p(T1, T2, T3)‖ ≥ 4 but ‖p‖∞ < 4.
These examples use contractions which are not diagonalizable. In [LS94], Lotto and Steger

construct an example consisting of diagonalizable contractions by doing a perturbation of the
example of Kaijser and Varopoulos.
Recently, Choi and Davidson have given in [CD13] four 3× 3 commuting contractive matrices

which fail to satisfy the matrix-valued von Neumann’s inequality, and therefore, they do not have
a unitary dilation. However, the matrices satisfy the scalar-valued von Neumann’s inequality. The
question of whether one can give a similar example with only three 3× 3 matrices remains open.
It is also open whether the scalar-valued von Neumann’s inequality holds for 3× 3 contractions.
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2.9. A dilation existence result for diagonalizable contractions

The purpose of this section is to prove the following theorem.

Theorem 2.12 (Lotto). Assume that T1, . . . , Tn is a tuple of commuting, diagonalizable contrac-
tions on a finite-dimensional Hilbert space H and that no nontrivial subspace of H reduces all
the contractions Tj. If there exists a diagonalizable contraction X ∈ B(H) which commutes with
every Tj and such that I − X∗X has rank 1, then the matrix-valued von Neumann’s inequality
holds for T1, . . . , Tn.

This theorem first appeared in [Lot94] for the scalar-valued von Neumann’s inequality. The
statement involving the matrix-valued von Neumann’s inequality does not seem to appear in the
literature, but it is obtained by literally the same proof as the scalar-valued case. The importance
of the matrix-valued case is that, together with Theorem 2.8, it shows that if T1, . . . , Tn satisfies
the hypothesis of the Theorem, then T1, . . . , Tn has a unitary dilation.
The assumption that no notrivial subspace reduces all the contractions Tj is not restrictive. In-

deed, ifM ⊂ H is a subspace which reduces every Tj , then von Neumann’s inequality for T1, . . . , Tn
will hold if and only if it holds for both the tuples T1|M, . . . , Tn|M and T1|H	M, . . . , Tn|H	M .
If Tj satisfy the hypothesis of the theorem, then they can be simultaneously diagonalized in a

basis {v1, . . . , vN} of eigenvectors. For w ∈ CN , we will denote by Dw the operator defined by
Dwvj = wjvj . We see that each operator Tj is of the form Dw for an appropriate choice of w.
First we need to compute when such an operator Dw is a contraction.

Lemma 2.13. The operator Dw is a contraction if and only if the matrix[
(1− wjwk)〈vj , vk〉

]N
j,k=1

(2.15)

is non-negative.

Proof. It suffices to observe that (2.15) is the matrix of the operator I − D∗wDw in the (non-
orthonormal) basis {v1, . . . , vn}, so that (2.15) will be non-negative if and only if I −D∗wDw ≥ 0.
To check that (2.15) is the matrix of I −D∗wDw, we compute

〈(I −D∗wDw)vj , vk〉 = 〈vj , vk〉 − 〈Dwvj , Dwvk〉 = (1− wjwk)〈vj , vk〉.

We need another technical lemma where we use the hypothesis concerning nontrivial reducing
subspaces.

Lemma 2.14. If Dw is a contraction, then either Dw is a scalar multiple of the identity or
|wj | < 1 for j = 1, . . . , N .

Proof. It is clear that |wj | ≤ 1. Assume that |wj0 | = 1 for some j0. By the preceding lemma, the
matrix (2.15) is non-negative, therefore any submatrix of that matrix is also non-negative.
Since no nontrivial subspace of H reduces all the contractions Tj , there must be an eigenvector

vk0 such that 〈vj0 , vk0〉 6= 0. Otherwise, the subspace generated by vj0 would reduce all the
contractions Tj .
The submatrix of (2.15) formed by the j0-th and k0-th rows and columns is[

0 (1− wj0wk0)〈vj0 , vk0〉
(1− wk0wj0)〈vk0 , vj0〉 (1− |wk0 |2)‖vk0‖2.

]
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The determinant of this matrix is −|(1 − wj0wk0)〈vj0 , vk0〉|2, and must be non-negative because
the matrix is non-negative. Hence, we get 1− wj0wk0 = 0, which implies wk0 = wj0 .
Iterating this argument for wk0 instead of wj0 , we see that wk = wj0 for any k such that vk

can be linked to vj0 by a chain of eigenvectors vj0 , vj1 , . . . , vjr = wk such that 〈vjl , vjl+1
〉 6= 0.

However, the set of all such eigenvectors vk must be {v1, . . . , vn}, because their linear span is a
nonempty subspace which reduces all the contractions Tj .

Now we consider the contraction X in the statement of the theorem. Since it commutes with
all Tj , it is also of the form Dz for some z ∈ CN . Moreover, since I −D∗zDz has rank 1, then Dz

cannot be a scalar multiple of the identity. By the preceding Lemma, we see that |zj | < 1 for all
j. It follows that Dz is a C00 contraction (note that, for instance, its spectral radius is less than
1).
Now we can apply the Sz.-Nagy–Foiaş theory to Dz. First note that the defect space DDz is

one-dimensional. By applying Theorem 1.10 to D∗z , we see that its characteristic function ΘD∗z is
an inner function in H∞(DD∗z ,DDz). This implies that DD∗z is also one-dimensional (recall that
Θ(eit) is an isometry from DD∗z into DDz a.e. in T). Hence, the Sz.-Nagy–Foias model for Dz is
constructed in the scalar-valued H2(D) space.
We apply Theorem 1.10 to Dz to see that it is unitarily equivalent to the compression operator

PKMz|K, where K is some subspace of H2(D), invariant for M∗z . The remark now is that this
gives the operator Dz an H∞(D) functional calculus, which can be defined easily in terms of the
model operator. If f ∈ H∞(D), we can define

f(PKMz|K) = PKf(Mz)|K = PKMf |K.

This means that for g ∈ K, we put f(PKMz|M)g = PK(fg). Then, it is clear that PKMz|K
satisfies von Neumann’s inequality for f ∈ H∞(D):

‖f(PKMz|M)‖ ≤ ‖f‖H∞(D).

A similar construction can be done for f ∈ Ms(H
∞(D)), i.e., when f is an s × s matrix with

H∞(D) entries, and the corresponding von Neumann’s inequality also holds.
This allows us to define an Ms(H

∞(D)) functional calculus for the operator Dz such that it
satisfies von Neumann’s inequality:

‖f(Dz)‖ ≤ ‖f‖∞, f ∈Ms(H
∞(D)). (2.16)

Here ‖f‖∞ = supz∈D ‖f(z)‖. It is easy to check that when f is scalar-valued, f(Dz) = Df(z),
where f(z) = (f(z1), . . . , f(zn)).
Now we give the main Theorem which allows one to deduce Theorem 2.12 from the functional

calculus of Dz.

Theorem 2.15. Assume that Dz is a contraction such that I − D∗zDz has rank 1. Then the
following are equivalent for a vector w ∈ CN :

(i) Dw is a contraction.

(ii) The matrix [
1− wjwk
1− zjzk

]N
j,k=1

is non-negative.
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(iii) There is a function f ∈ H∞(D) with ‖f‖H∞(D) ≤ 1 and f(zj) = wj.

(iv) There is a function f ∈ H∞(D) with ‖f‖H∞(D) ≤ 1 and f(Dz) = Dw.

Proof. Assume that (i) holds. By Lemma 2.13 the matrix [(1− zjzk)〈vj , vk〉]Nj,k=1 is non-negative
and has rank 1 (because it is the matrix of I −D∗zDz). Hence, there is a vector c ∈ CN such that

(1− zjzk)〈vj , vk〉 = cjck.

This shows that no cj can vanish, because |zj | < 1 by Lemma 2.14.
Now, if C is the diagonal matrix having the vector c as its diagonal, we see that

[
(1− wjwk)〈vj , vk〉

]N
j,k=1

= C

[
1− wjwk
1− zjzk

]N
j,k=1

C∗.

Since the matrix on the left hand side is non-negative by Lemma 2.13 and C is invertible, this
proves (ii).
If (ii) holds, then we get (iii) by the Nevanlinna-Pick interpolation Theorem (see Section 2.2).

That (iii) implies (iv) is just a consequence of the functional calculus for Dz. Finally, (iv) implies
(i) by von Neumann’s inequality (2.16).

Proof of Theorem 2.12. We see that under the hypothesis of the Theorem, there are functions
f1, . . . , fn ∈ H∞(D) with ‖fj‖H∞(D) ≤ 1 and Tj = fj(Dz). If p ∈ Ms[z1, . . . , zn] is a matrix-
valued polynomial,

p(T1, . . . , Tn) = [p ◦ (f1, . . . , fn)](Dz).

We just have to note that [p ◦ (f1, . . . , fn)] is in Ms(H
∞(D)) and ‖p ◦ (f1, . . . , fn)‖∞ ≤ ‖p‖∞, so

it suffices to use (2.16).

As concluding remarks, Lotto also proves that the hypothesis of Theorem 2.12 are always
satisfied for diagonalizable 2 × 2 contractions, and gives a practical way of checking them for
diagonalizable 3×3 contractions. Since every tuple of 2×2 or 3×3 matrices can be perturbed to
a commuting tuple of diagonalizable matrices (see [Lot94, Lemma 10]), this implies that a unitary
dilation always exists for tuples of commuting 2× 2 contractions. The case of 2× 2 contractions
was previously studied by Drury in [Dru83], where he proved that they satisfied the scalar-valued
von Neumann’s inequality.
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3. Livšic-Vinnikov theory

This chapter contains an introductory exposition of the Livšic-Vinnikov theory of commuting
non-selfadjoint operators. As we have commented in the Preface, it is a different approach to
the theory of commuting operators. Its main idea is, roughly speaking, to embed the tuple of
operators in a structure depending on some auxiliary matrices which characterize, in a certain
sense, the behaviour of the operators. These matrices can be used to assign an algebraic curve to
the tuple, thus giving a connection with Algebraic Geometry.
The exposition of this chapter is organized in the following way. First we treat the theory of

colligations of a single operator. Then, we discuss its generalization to several operators, but
some difficulties arise. This motivates the definition of vessel, which allows one to solve these
difficulties. Finally, we treat the topic of vessels of two operators, which have a richer theory.
The main monograph about this theory is the book by Livšic, Kravitsky, Marcus and Vinnikov

[LKMV95]. Some interesting expository papers are [Vin98,BV03].

3.1. Colligations of a single operator

Definition (Colligation of a single operator). Given H a Hilbert space, E a finite dimensional
Hilbert space, operators Φ ∈ B(H,E) and A ∈ B(H), and a selfadjoint operator σ ∈ B(E), the
tuple C = (A;H,Φ, E;σ) is called a colligation if the relation

1

i
(A−A∗) = Φ∗σΦ (3.1)

holds.

The space H is called the inner space, the space E is called the outer space, the operator Φ
is said to be the window of the colligation, and σ is called the rate. From (3.1) we see that the
operator A must have an imaginary part ImA = (A−A∗)/2i of finite rank and that the operator
σ somehow models ImA. The colligation is said to be strict if ΦH = E and kerσ = 0. This
condition has the meaning that the outer space E is not too large. Although it seems quite natural,
it is often too restrictive. For instance, the projection of a strict colligation (to be defined below)
need not be strict, or a strict colligation with one-dimensional inner space must have dimE = 1.
Every operator A with finite-dimensional imaginary part can be embedded in a strict colligation

by putting E = (A − A∗)H, Φ = PE , the orthogonal projection onto E, and σ = (A − A∗)/i|E.
It turns out that, in some aspects, colligations are a more useful framework than the operators
alone to study this class of non-selfadjoint operators. Hence, embedding a given operator in a
colligation is usually the first step in its study.
Another common way of embedding an operator A in a colligation is to define E in the same

way as above and then put Φ = (|(A − A∗)/i||E)
1
2 , σ = sign(A − A∗)/i|E. Note that here one

is using the Borel (or continuous) functional calculus for the selfadjoint operator (A−A∗)/i (see
Appendix A.2). This embedding has the advantage that the operator σ is rather simple. However,
it cannot be generalized to tuples of several operators.
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3. Livšic-Vinnikov theory

The concepts of decomposition and coupling allow us to respectively break a colligation into two
smaller colligations and to join two colligations into a larger one. By coupling colligations several
times, one can build up a colligation from simple colligations, such as, for instance, colligations
having one-dimensional inner space.
Let H ′′ be a subspace invariant for A and put H ′ = H 	H ′′. Then we define A′ = PH′A|H ′,

A′′ = A|H ′′, Φ′ = Φ|H and Φ′′ = Φ|H ′′. It is now easy to check that the tuples C′ =
(A′;H ′,Φ′, E;σ) and C′′ = (A′′;H ′′,Φ′′, E;σ) are colligations. These colligations are called the
decomposition of C with respect to H ′′, and C′, C′′ are called the projections of C onto H ′ and
H ′′ respectively. Multiplying (3.1) by PH′′ on the left, restricting to H ′, and using PH′′A∗|H ′ = 0
(which is true because H ′ is invariant for A∗), we get

1

i
PH′′A|H ′ = PH′′Φ

∗σΦ|H ′ = Φ′′∗σΦ′.

This means that A has the form

A =

[
A′ 0

iΦ′′∗σΦ′ A′′

]
(3.2)

with respect to the decomposition H = H ′ ⊕H ′′.
Conversely, given colligations C′ = (A′;H ′,Φ′, E;σ) and C′′ = (A′′;H ′′,Φ′′, E;σ) with the same

rate σ, one can form the coupling C′ ∨C′′ = (A;H,Φ, E;σ) by puting H = H ′⊕H ′′, Φ = [Φ′,Φ′′],
and defining A by (3.2). Then it is easy to check that the copuling C′ ∨ C′′ is a colligation.
Moreover, the space H ′′ is invariant for A and the decomposition of the coupling with respect to
H ′′ is precisely the colligations C′ and C′′.
A colligation has a system theoretical interpretation that allows us to use techniques from the

control theory and the theory of partial differential equations to study operators. Consider the
dynamical system

i
df

dt
+Af = Φ∗σu,

v = u− iΦf,
(3.3)

where t ranges over an interval in R (finite or infinite). Here u(t) ∈ E is the input of the system,
f(t) ∈ H is the state, and v(t) ∈ E is the output of the system.
This system satisfies the law of conservation of energy

d

dt
〈f, f〉 = 〈σu, u〉 − 〈σv, v〉. (3.4)

We understand the (indefinite) quadratic form given by σ as a measure of the energy at the input
and output, so that (3.4) just says that the variation of the internal energy of the system ‖f‖2
amounts just to the energy added at the input and the energy extracted at the output.
To prove (3.4), we first use (3.3) to obtain

d

dt
〈f, f〉 = 2 Re〈df

dt
, f〉 = 2 Re〈iAf − iΦ∗σu, f〉.

Now we use iA = iA∗ −Φ∗σΦ, which comes from (3.1) and iΦf = u− v, which comes from (3.3)
to get

2 Re〈iAf, f〉 = Re〈iAf + iA∗f − Φ∗σΦf, f〉 = −〈σΦf,Φf〉 = −〈σ(u− v), u− v〉,
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3. Livšic-Vinnikov theory

where the second equality holds because A+A∗ is selfadjoint. Also,

2 Re〈−iΦ∗σu, f〉 = 2 Re〈σu, iΦf〉 = 2 Re〈σu, u− v〉.

Putting together these two equations, we finally get

d

dt
〈f, f〉 = 2 Re〈iAf − iΦ∗σu, f〉 = −〈σ(u− v), u− v〉+ 2 Re〈σu, u− v〉

= 〈σu, u〉 − 〈σv, v〉.

The coupling of colligations has a very natural interpretation in terms of systems. Let C′ and
C′′ be two colligations with the same rate, as above, and let f ′, u′, v′ and f ′′, u′′, v′′ denote the
state, input and output of the system associated with each colligation. We can cascade connect
these two systems by feeding the output of the first system into the input of the second system.
This means that we form a new system with input u and output v and put u′ = u, u′′ = v′ and
v = v′′. The system we obtain has the equations

i
df ′

dt
+A′f ′ = Φ′∗σu,

i
df ′′

dt
+A′′f ′′ = Φ′′∗σ(u− iΦ′f ′),

v = u− iΦ′f ′ − iΦ′′f ′′.

(3.5)

Thus, we see that if we put H = H ′ ⊕H ′′, Φ = [Φ′,Φ′′] and define A by (3.2), then the system
(3.5) is equivalent to (3.3) (with the identifications f ′ = PH′f , f ′′ = PH′′f). This shows that
the colligation which corresponds to the cascade connection of the systems is just the coupling
C′ ∨ C′′.
Another important tool in the study of colligations is the characteristic function. It is a B(E)-

valued analytic function on Ĉ \ σ(A) defined by

S(λ) = I − iΦ(A− λI)−1Φ∗σ. (3.6)

The motivation for the characteristic function comes from the system interpretation: it is the
transfer function of the system. If we assume that the state, input an output of the system are
monochromatic waves of the same complex frequency λ ∈ C, i.e.,

u(t) = u0e
iλt, f(t) = f0e

iλt, v(t) = v0e
iλt, (3.7)

then we define S(λ) by the input to output relation: v0 = S(λ)u0.
To get formula (3.6), we plug in the expressions (3.7) into the system (3.3) and cancel out the

factor eiλt to get

−λf0 +Af0 = Φ∗σu0

v0 = u0 − iΦf0.

This shows that v0 = u0 − iΦ(A− λI)−1Φ∗σu0 if λ /∈ σ(A).
From the system interpretation, it is clear that if C = C′∨C′′ is the coupling of two colligations,

its transfer function can be obtained as S(λ) = S′′(λ)S′(λ), where S′(λ) and S′′(λ) are the
characteristic functions of C′ and C′′ respectively. Also, every A-invariant subspace H ′′ produces
a decomposition of of the colligation, and hence, a factorization of the characteristic function.
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3. Livšic-Vinnikov theory

This gives a link between the theory of factorization of analytic functions and the study of the
invariant subspaces.
The characteristic function contains all the relevant information about the colligation. To make

this notion precise, we need to introduce the unitary equivalence of colligations and to define the
principal subspace. Two colligations C = (A;H,Φ, E;σ) and C′ = (A′;H ′,Φ′, E;σ) with the same
rate are called unitarily equivalent if there is a unitary U ∈ B(H,H ′) such that A′ = UAU∗ and
Φ′ = ΦU∗. The principal subspace of the colligation C is the space

Ĥ =
∨
k≥0

AkΦ∗E =
∨
k≥0

A∗kΦ∗E.

Here, the second equality is not obvious, but it is not difficult to prove using (3.1) (see [LKMV95,
Lemma 3.4.2]). Hence, the principal subspace reduces A. A colligation is called irreducible
if Ĥ = H. We say that C and C′ are unitarily equivalent on their principal subspace if the
colligations (A|Ĥ; Ĥ,Φ|Ĥ, E;σ) and (A′|Ĥ ′; Ĥ ′,Φ′|Ĥ ′, E;σ) are unitarily equivalent.
If σ 6= 0, the characteristic function determines the colligation up to unitary equivalence on the

principal subspace. This means that if C and C′ are two colligations which have the same char-
acteristic function, then the two colligations are unitarily equivalent on their principal subspace.
The proof of this result can be found in [LKMV95, Theorem 3.4.4].

3.2. Colligations of several commuting operators

Now we will try to generalize the concepts and results of the preceding section for a tuple
(A1, . . . , An) of commuting operators. Some of the results will generalize with little changes,
but when trying to generalize some others, we will find problems. These problems arise because,
in some sense, the colligation does not contain enough information about the interplay of the
operators Ak. This will motivate the concept of vessel, which will be introduced in the next
section.

Definition (Colligation of several operators). Given H a Hilbert space, E a finite-dimensional
Hilbert space, Φ ∈ B(H,E), selfadjoint operators σk ∈ B(E), k = 1, . . . , n, and operators Ak ∈
B(H), k = 1, . . . , n, we say that the tuple C = (Ak;H,Φ, E;σk) is a colligation if

1

i
(Ak −A∗k) = Φ∗σkΦ, k = 1, . . . , n. (3.8)

The colligation is called commutative if the operators Ak commute (i.e., if AjAk = AkAj). It is
said to be strict if ΦH = E and

⋂
k kerσk = 0.

As in the previous section, the operators σk are called the rates of the colligation. Every tuple
of commuting operators Ak with finite-dimensional imaginary parts can be embedded into a strict
commutative colligation by defining E =

∨
k(Ak −A∗k)H, Φ = PE and σk = (Ak −A∗k)/i|E.

Now we try to generalize the decomposition and coupling of colligations. Let C be a commutative
colligation. If H ′′ is a joint invariant subspace for the operators A1, . . . , An (meaning that it
is invariant for each operator Ak), then we can proceed as in the previous section and define
H ′ = H 	 H ′′, A′k = PH′Ak|H ′, A′′k = Ak|H ′′, Φ′ = Φ|H ′, and Φ′′ = Φ|H ′′. Then the tuples
C′ = (A′k;H

′,Φ′, E;σk) and C′′ = (A′′k;H
′′,Φ′′, E;σk) are commutative colligations. Note that

since the operators Ak commute, the operators A′k also commute, and similarly, A′′k commute. As
before, the operators Ak have the form

Ak =

[
A′k 0

iΦ′′∗σkΦ
′ A′′k

]
. (3.9)
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Now assume that we have commutative colligations C′ = (A′k;H
′,Φ′, E;σk) and C′′ = (A′′k;H

′′,
Φ′′, E;σk) with the same rates. We want to define their coupling as before. We put H = H ′⊕H ′′,
Φ = [Φ′,Φ′′] and define Ak by (3.9). However, now we run into problems: in general, the operators
Ak need not commute, even though A′k commute and A′′k commute. Indeed, we see that Ak will
commute if and only if the compatibility conditions

Φ′′∗σkΦ
′A′j +A′′kΦ

′′∗σjΦ
′ = Φ′′∗σjΦ

′A′k +A′′jΦ
′′∗σkΦ

′, j, k = 1, . . . , n (3.10)

are satisfied.
Hence, we see that the coupling of two commutative colligations is not always a commutative

colligation. The conditions (3.10) under which the coupling is commutative are not very useful,
because they are difficult to understand. Hence, we cannot build commutative colligations by
coupling several simple commutative colligations.
The dynamical system associated with a colligation C is

i
∂f

∂tk
+Akf = Φ∗σku,

v = u− iΦf.
(3.11)

Now the state, input and output are functions defined on Rn. There are two interpretations of
this system. The first one is the vector field interpretation: given an input vector field u(t) on Rn,
and an initial state f0 ∈ H, find, if possible, vector fields f(t) and v(t) on Rn satisfying (3.11)
and f(0) = f0. The second one is the curve interpretation: given a piecewise smooth curve L on
Rn parametrized by (t1(τ), . . . , tn(τ)), τ ∈ R, an input vector field u(τ) along L and an initial
state f0 ∈ H, find functions of the parameter f = f(τ) and v = v(τ) satisfying the system

i
df

dτ
+

n∑
k=1

∂tk
∂τ

Akf = Φ∗
n∑
k=1

∂tk
∂τ

σku,

v = u− iΦf,
(3.12)

and f(0) = f0. This system is obtained by restricting (3.11) to the curve L and writing everything
as a function of the parameter τ .
The system (3.11) can be thought as a system having n independent temporal variables. One

can also think of one of the variables, say t1, representing time and the remaining n− 1 variables
representing space, so that (3.11) models a continuous of interacting temporal systems distributed
in space.
In general, the system is overdetermined, and will not be consistent. Given a vector field

u(t) on Rn, we will say that the system obtained is consistent if the vector field interpretation
has a solution for any f0 ∈ H. This is equivalent to the following condition using the curve
interpretation: for any initial condition f0 ∈ H, and any parametrized curve (t1(τ), . . . , tn(τ))
such that (t1(0), . . . , tn(0)) = 0, if f(τ) and v(τ) are the solutions of (3.12), then the values f(1)
and v(1) depend only on the initial condition f0 and the point p = (t1(1), . . . , tn(1)), but not on
the curve in question which joins 0 and p.
One can see (in [LKMV95, Theorem 3.2.1], for instance) that the necessary and sufficient

conditions for the system to be consistent are the compatibility conditions which arise from the
equality of the mixed partial derivatives

∂2f

∂tj∂tk
=

∂2f

∂tk∂tj
.
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When the system is given the zero input (i.e., u ≡ 0), we see that the system is consistent because
the operators Ak commute. However, for an arbitrary input u, the system is not going to be
consistent in general. Let us deduce what are the conditions on u for the equality of the mixed
partial derivatives.
We compute

∂2f

∂tk∂tj
=

∂

∂tk
(iAjf − iΦ∗σju) = iAj(iAkf − iΦ∗σku)− iΦ∗σj

∂u

∂tk
.

Hence, since Ak commute, we see that the equality of the mixed partials is equivalent to the
conditions (

Φ∗σj
∂

∂tk
− Φ∗σk

∂

∂tj
+ iAjΦ

∗σk − iAkΦ∗σj
)
u = 0, j, k = 1, . . . , n. (3.13)

Once again, this condition is complicated, so we do not obtain a satisfactory interpretation of
commutative colligations in terms of systems.
However, even if the system is not consistent, we can always consider the curve interpretation

with L = Lξ the straight line given by (ξ1τ, . . . , ξnτ), where ξ = (ξ1, . . . , ξn) ∈ Rn is a fixed
direction. Then the system (3.12) that we obtain is the system associated to the single operator
colligation Cξ = (ξA;H,Φ, E; ξσ), where we abuse notation a bit and write

ξA =

n∑
k=1

ξkAk, ξσ =

n∑
k=1

ξkσk.

Hence, applying the results of the preceding section, we obtain the conservation law

n∑
k=1

ξk
∂

∂tk
〈f, f〉 = 〈ξσu, u〉 − 〈ξσv, v〉. (3.14)

This means that the energy of the system is conserved along any direction ξ, when one takes into
account the energy added at the input and the energy extracted at the output, measured with
the indefinite quadratic form ξσ.
The theory of the characteristic function generalizes pretty well to commutative colligations.

The analogue here is the complete characteristic function S(ξ, z), where ξ ∈ Cn, and z ∈ C. It is
a function analytic on (ξ, z) outside the set where z ∈ σ(ξA), and is defined by

S(ξ, z) = I − iΦ(ξA− zI)−1Φ∗ξσ.

When ξ ∈ Rn, this has the clear interpretation of the characteristic function of the single operator
colligation Cξ = (ξA;H,Φ, E; ξσ), so it has a system theoretical interpretation. When ξ /∈ Rn,
one can just think of S(ξ, z) as an analytic continuation.
When the colligation C decomposes into colligations C′ and C′′, we obtain a factorization of

the complete characteristic function S(ξ, z) = S′′(ξ, z)S′(ξ, z), where S′(ξ, z) and S′′(ξ, z) are the
complete characteristic functions of C′ and C′′ respectively. To prove this fact, we first consider
the case when ξ ∈ Rn. In this case, S(ξ, z) is the characteristic function of the single operator
colligation Cξ = (ξA;H,Φ, E; ξσ), which decomposes into colligations C′ξ = (ξA′;H ′,Φ′, E; ξσ) and
C′′ξ = (ξA′′;H ′′,Φ′, E; ξσ). Hence, the factorization follows from the theory of single operators
colligations. The general case is obtained by analytic continuation.
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The principal subspace of the colligation C is defined as the subspace

Ĥ =
∨

k1,...,kn≥0

Ak11 · · ·A
kn
n H =

∨
k1,...,kn≥0

A∗k11 · · ·A∗knn H.

Unitary equivalence of colligations is defined as in the previous section. Then, if the non-
degeneracy condition

det ξσ 6≡ 0 (3.15)

holds, the complete characteristic function S(ξ, z) determines the colligation up to unitary equiv-
alence on the principal subspace.

3.3. Vessels of several commuting operators

In the previous section, we have seen how some important aspects of the theory of single operator
colligations cannot be satisfactorily generalized to several commuting operators. The main prob-
lem is that we encountered conditions such as (3.10) and (3.13) which do not seem very natural
and are also difficult to check because they involve the operators Ak, which in general act on an
infinite-dimensional space. We would like to reformulate these conditions in terms of operators
acting on the finite-dimensional outer space.
The key point here is that the rates σk of the colligation do not capture all the information we

need, because they only model the imaginary parts of the operators Ak. In particular, they do not
capture any information about the interplay of the operators Ak. It turns out that what is needed
is another tuple of operators which reflect in some sense the relation between the operators Ak
and A∗j .
To motivate the definition of this new tuple, assume that we have a commutative strict colli-

gation C = (Ak;H,Φ, E;σk). First note that

1

i
(AkA

∗
j −AjA∗k) =

1

i
[(Ak −A∗k)A∗j − (Aj −A∗j )A∗k], (3.16)

and
1

i
(A∗jAk −A∗kAj) =

1

i
[(Ak −A∗k)Aj − (Aj −A∗j )Ak]. (3.17)

Now (3.8) shows that the range of the operators on the left hand side of these equalities is
contained in G = Φ∗E. It is easy to see that since the colligation is strict, the operators Φ|G and
Φ∗ are one-to-one maps taking G onto E and E onto G respectively (see [LKMV95, Proposition
2.1.2]). Hence, if we define operators γinkj and γ

out
kj on E by

γinkj = (Φ∗)−1

[
1

i
(AkA

∗
j −AjA∗k)

]
(Φ|G)−1,

γoutkj = (Φ∗)−1

[
1

i
(A∗jAk −AkA∗j )

]
(Φ|G)−1,

then we get

1

i
(AkA

∗
j −AjA∗k) = Φ∗γinkjΦ,

1

i
(A∗jAk −A∗kAj) = Φ∗γoutkj Φ,

(3.18)
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Hence, the operators γinkj and γ
out
kj are operators on the outer space which model the operators on

the left hand side of equalities (3.18). The “in” and “out” labels will make sense when we get to
discuss the system theoretical interpretation. Note that γinkj and γoutkj are selfadjoint and satisfy
γinkj = −γinjk and γoutkj = −γoutjk .
Using equations (3.8), (3.16) and (3.17), we obtain

Φ∗(σkΦA
∗
j − σjΦA∗k) = Φ∗γinkjΦ,

Φ∗(σkΦAj − σjΦAk) = Φ∗γoutkj Φ.

Since the colligation is strict, Φ∗ can be cancelled to yield

σkΦA
∗
j − σjΦA∗k = γinkjΦ,

σkΦAj − σjΦAk = γoutkj Φ.
(3.19)

Subtracting these two inequalities, using (3.8) and cancelling out the factor Φ on the right (again,
this can be done because the colligation is strict), we also get

γoutkj = γinkj + i(σkΦΦ∗σj − σjΦΦ∗σk). (3.20)

As we have already mentioned, the strictness of a commutative colligation is generally too
restrictive. However, the identities (3.19) and (3.20) are all we need to give good generalizations
of the concepts in Section 3.1. Hence, this motivates the definition of an operator vessel.

Definition (Operator vessel). Suppose that we are givenH a Hilbert space, E a finite-dimensional
Hilbert space, Φ ∈ B(H,E), a tuple of commuting operators Ak ∈ B(H), k = 1, . . . , n, selfadjoint
operators σk ∈ B(E), and selfadjoint operators γinkj , γ

out
kj ∈ B(E) satisfying γinkj = −γinjk and

γoutkj = −γoutjk . We say that the tuple V = (Ak;H,Φ, E;σk, γ
in
kj , γ

out
kj ) is a (commutative) vessel if

the following conditions are satisfied:

1

i
(Ak −A∗k) = Φ∗σkΦ, (3.21)

σkΦA
∗
j − σjΦA∗k = γinkjΦ, (3.22)

γoutkj = γinkj + i(σkΦΦ∗σj − σjΦΦ∗σk), (3.23)

σkΦAj − σjΦAk = γoutkj Φ. (3.24)

The operators γinkj and γ
out
kj are called the gyrations of the vessel. It is easy to see that conditions

(3.24) follow from (3.21)–(3.23), and that conditions (3.22) follow from (3.21), (3.23) and (3.24).
Conditions (3.23) are called the linkage conditions.
The discussion above shows that any strict commutative colligation can be embedded in a

vessel. In particular, any tuple of commuting operators Ak with finite-dimensional imaginary
parts can be embedded in a vessel. As we will show now, vessels are the appropriate tool for
studying commuting operators with finite-dimensional imaginary parts.
Let us first discuss the system theoretical interpretation, because this will later motivate the

decomposition and coupling of vessels. If V = (Ak;H,Φ, E;σk, γ
in
kj , γ

out
kj ) is a vessel, we assign

to it the system (3.11), as we did with colligations in the preceding section. The problem is to
rewrite the compatibility conditions (3.13) using the gyrations of the vessel. Taking adjoints in
(3.22), we see that (3.13) rewrites as

Φ∗
(
σj

∂

∂tk
− σk

∂

∂tj
+ iγinkj

)
u = 0, j, k = 1, . . . , n. (3.25)
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3. Livšic-Vinnikov theory

Hence, we see that an input vector field u makes the system (3.11) compatible if an only u satisfies
the compatibility conditions (3.25). This explains the label “in” in the gyrations γinkj .
Now we will see that the output v of the system satisfies similar compatibility conditions. Since

u = v + iΦf , we get

Φ∗
(
σj

∂

∂tk
− σk

∂

∂tj
+ iγinkj

)
(v + iΦf) = 0.

Now we compute

Φ∗
(
σj

∂

∂tk
− σk

∂

∂tj
+ iγinkj

)
(iΦf) =

= Φ∗σjΦ(Φ∗σku−Akf)− Φ∗σkΦ(Φ∗σju−Ajf)− Φ∗γinkjΦf

= iΦ∗γoutkj u− iΦ∗γinkju+ Φ∗γoutkj Φf − Φ∗γinkjΦf

= iΦ∗(γoutkj − γinkj)v.

Here we have used the system (3.11) in the first equality, the vessel conditions (3.23) and (3.24)
in the second equality and the identity v = u− iΦf in the third equality. Hence, we see that the
output of the system satisfies the compatibility conditions

Φ∗
(
σj

∂

∂tk
− σk

∂

∂tj
+ iγoutkj

)
v = 0, j, k = 1, . . . , n. (3.26)

If we drop Φ∗ in (3.25), we obtain the conditions(
σj

∂

∂tk
− σk

∂

∂tj
+ iγinkj

)
u = 0, j, k = 1, . . . , n. (3.27)

These conditions are sufficient for the input u to make the system compatible, and are also
necessary when Φ∗ is injective. The important aspect of these conditions is that they are written
entirely in terms of operators on E, so they can be checked using matrices. If the input u satisfies
(3.27), arguing as above we see that the output v satisfies the compatibility conditions(

σj
∂

∂tk
− σk

∂

∂tj
+ iγoutkj

)
v = 0, j, k = 1, . . . , n. (3.28)

With this in mind, the system theoretical interpretation of the vessel V is the system (3.11)
together with the compatibility conditions (3.25) and (3.26) (or (3.27) and (3.28)) at the input
and output respectively. Indeed, it is more usual to take (3.27) and (3.28) as the compatibility
conditions.
Now we turn to the analysis of the decomposition and coupling of vessels. The coupling of

vessels is actually easier to deduce, because it corresponds to cascade connection of systems,
as in the case of single operator colligations. Let V ′ = (A′k;H

′,Φ′, E;σk; γ
in ′
kj , γ

out ′
kj ) and V ′′ =

(A′′k;H
′′,Φ′′, E;σk; γ

in ′′
kj , γ

out ′′
kj ) be two vessels with the same rates. The important thing if one

wishes to cascade connect their corresponding systems is that whenever we feed some compatible
input u′ into the first system, then the output v′ it produces should be a compatible input for the
second system. This imposes the matching conditions

γout ′kj = γin ′′kj . (3.29)

If the matching conditions hold, then we define H, Φ and Ak as we did for colligations and put

γinkj = γin ′kj , γoutkj = γout ′′kj ,
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3. Livšic-Vinnikov theory

which again is natural in view of the system interpretation: the compatibility conditions for the
input of the cascaded system are those at the input of the first system, and the compatibility
conditions for the output of the cascaded system are those at the output of the second system.
Now we should check that the coupling V = V ′ ∨ V ′′ = (Ak;H,Φ, E;σk, γ

in
kj , γ

out
kj ) is indeed a

vessel. In the preceding section we saw that the operators Ak commute if and only if (3.10) is
satisfied. Rewriting these conditions in terms of the gyrations of the vessels, we get

Φ′′∗γout ′kj Φ′ = Φ′′∗γin ′′kj Φ′. (3.30)

These conditions hold, because of the matching conditions (3.29). Moreover, if we start with strict
colligations C′ and C′′ and embed them into vessels V ′ and V ′′ respectively, then the operators
Φ′′∗ and Φ′ in (3.30) can be cancelled. Hence, we see that, in this case, the matching conditions
(3.29) are also necessary for the coupling C′ ∨ C′′ to be a commutative colligation.
We also need to check the vessel conditions (3.21)–(3.24) for the coupling V = V ′ ∨ V ′′. Con-

ditions (3.21) are checked in the same way as for a single operator colligation. Conditions (3.23)
hold because

γoutkj − γinkj = γout ′′kj − γin ′′kj + γout ′kj − γin ′kj

= i(σkΦ
′′Φ′′∗σj − σjΦ′′Φ′′∗σk) + i(σkΦ

′Φ′∗σj − σjΦ′Φ′∗σk)
= i(σkΦΦ∗σj − σjΦΦ∗σk).

Conditions (3.24) restricted to H ′′ are true because H ′′ is joint invariant for Ak, so they are
equivalent to the corresponding conditions for V ′′. To check the conditions restricted to H ′, we
compute

(σkΦAj − σjΦAk)|H ′ = σk(Φ
′A′j + iΦ′′Φ′′∗σjΦ

′)− σj(Φ′A′k + iΦ′′Φ′′∗σkΦ
′)

= γout ′kj Φ′ + (γout ′′kj − γin ′′kj )Φ′ = γoutkj Φ|H ′.

Finally, conditions (3.22) follow from (3.21), (3.23) and (3.24).
The decomposition of a vessel can also be understood in a similar way. Assume that V =

(Ak;H,Φ, E;σk, γ
in
kj , γ

out
kj ) is a vessel, H ′′ is a joint invariant subspace of the operators Ak and

H ′ = H 	H ′′. We have seen in the preceding section how the colligation (Ak;H,Φ, E;σk) can be
decomposed with respect to H ′′ into two colligations. To decompose V, we define the operators
A′k, A

′′
k, Φ′ and Φ′′ in the same way.

We also need to define the gyrations γin ′kj , γ
in ′′
kj , γout ′kj and γout ′′kj . To do this, we imagine that we

break the system associated with V into two cascade connected systems, which will be associated
with the vessels V ′ and V ′′. Then it is apparent that we should define γin ′kj = γinkj and γ

out ′′
kj = γout ′′kj .

The system interpretation does not tell us how to define γout ′kj and γin ′′kj . It only tells us that they
should match: γout ′kj = γin ′′kj . However, the linkage conditions (3.23) for V ′ and V ′′ allow us to
define γout ′kj and γin ′′kj in terms of γin ′kj and γout ′′kj . We put

γout ′kj = γin ′kj + i(σkΦ
′Φ′∗σj − σjΦ′Φ′∗σk),

γin ′′kj = γout ′′kj − i(σkΦ′′Φ′′∗σj − σjΦ′′Φ′′∗σk).

A simple computation shows that γout ′kj = γin ′′kj .
Hence, the decomposition of V with respect to H ′′ is formed by the vessels V ′ = (A′k;H

′,Φ′, E;
σk, γ

in ′
kj , γ

out ′
kj ) and V ′′ = (A′′k;H

′,Φ′, E;σk, γ
in ′′
kj , γ

out ′′
kj ). Routine checks show that V ′ and V ′′ are

indeed vessels and that V is the coupling V = V ′ ∨ V ′′.
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If V = (Ak;H,Φ, E;σk; γ
in
kj , γ

out
kj ) is a vessel, then the tuple (Ak;H,Φ, E;σk) is a commuta-

tive colligation. Hence, the concepts of complete characteristic function, principal subspace and
irreducibility given in the previous section, can also be applied to vessels.
Another construction that vessels allow is that of the discriminant varieties, which allow one

to give a generalization of the Cayley-Hamilton Theorem, and also give a link between alge-
braic geometry and operator theory. We define the input discriminant ideal J in as the ideal in
C[z1, . . . , zn] generated by the polynomials of the form

det

 n∑
j,k=1

Γjk(zjσk − zkσj + γinjk)

 ,

where Γjk = −Γkj can be arbitrary operators on the outer space E. Similarly, the output
discriminant ideal J out is defined by replacing the input gyrations γinjk by the output gyrations
γoutjk . The input and output discriminant varieties, Din and Dout respectively, are defined as the
algebraic varieties in Cn associated with these ideals. This means that

Din = {z ∈ Cn : p(z) = 0,∀p ∈ J in}, Dout = {z ∈ Cn : p(z) = 0,∀p ∈ J out}.

We can also define, for z ∈ Cn, the following subspaces of E:

Ein(z) =
n⋂

j,k=1

ker(zjσk − zkσj + γinjk), Ein(z) =
n⋂

j,k=1

ker(zjσk − zkσj + γoutjk ).

Their connection with the discriminant varieties is that z ∈ Din if and only if Ein(z) 6= 0, and
analogously for the output discriminant variety (see [LKMV95, Proposition 4.1.3]).
Now we can give the statement of the generalized Cayley-Hamilton theorem. For the proof, see

[LKMV95, Theorem 4.1.2].

Theorem 3.1 (Generalized Cayley-Hamilton). Let V = (Ak;H,Φ, E;σk, γ
in
kj , γ

out
kj ) be an irre-

ducible vessel, and pin(z) ∈ J in, pout(z) ∈ J out arbitrary polynomials in the input and output
discriminant ideals of the vessel. Then the operators A1, . . . , An satisfy the algebraic equations

pin(A∗1, . . . , A
∗
n) = 0, pout(A1, . . . , An) = 0.

In the next section we will give the statement of this theorem for vessels of two operators and
show how the classical Cayley-Hamilton theorem can be derived from it.
Another construction that can be done with vessels is that of the adjoint vessel. If V =

(Ak;H,Φ, E;σk, γ
in
kj , γ

out
kj ) is a vessel, then it is easy to check that V∗ = (A∗k;H,−Φ, E;−σk,

−γoutkj ,−γinkj) is also a vessel. This vessel is called the adjoint vessel. It is also easy to see that
when passing from a vessel V to its adjoint vessel V∗, the input and output discriminant varieties
Din and Dout interchange, and so do the subspaces Ein(z) and Eout(z). There is an interesting
interpretation of the adjoint vessel in terms of the system theoretical interpretation: it corresponds
to running the system backwards, i.e., interchanging the input and the output of the system. The
proof of this fact is a simple computation (see [LKMV95, Proposition 3.3.1]).

3.4. Vessels of two commuting operators

For a vessel of two operators all the results of the preceding section can be applied. Moreover,
one can make some simplifications that allow to develop the theory further.
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First note that since γin12 = −γin21, there is essentially only one input gyration. We will write
γin = γin12. Analogously, there is essentially only one output gyration and we will write γout = γout12 .
Also, the input discriminant ideal J in is principal, which means that it is generated by a single
polynomial. This happens because

det
(
Γ12(z1σ2 − z2σ1 + γin12) + Γ21(z2σ1 − z1σ2 + γin21)

)
= det(2Γ12) det(z1σ2 − z2σ1 + γin).

Hence, the polynomial det(z1σ2 − z2σ1 + γin) generates the ideal J in. This polynomial is called
the input discriminant polynomial. A similar thing happens with the output discriminant ideal:
it is generated by the polynomial det(z1σ2− z2σ1 + γout), which is called the output discriminant
polynomial.
Indeed, it turns out that the input and output discriminant polynomials are equal:

det(z1σ2 − z2σ1 + γin) = det(z1σ2 − z2σ1 + γout).

A proof of this equality is given in [LKMV95, Corollary 4.2.2]. We will denote by ∆(z1, z2) this
polynomial, and we will call it the discriminant polynomial. This implies that the input and
output discriminant varieties coincide, so we will write D = Din = Dout. The variety D is either
an algebraic curve in C2 or all of C2 (this second case is considered to be degenerate), so it will
usually be called the discriminant curve of the vessel.
For vessels of more than two operators, the input and output discriminant varieties are distinct

in general. However, they may only differ by a finite number of isolated points. It is believed
that this points may be related to some pathologies involving commuting tuples of more than two
operators, such as the failure of von Neumann’s inequality or the non-existence of a dilation. A
discussion of this fact is included in [LKMV95, Section 7.2].
With these observations, the generalized Cayley-Hamilton theorem becomes the following The-

orem.

Theorem 3.2 (Generalized Cayley-Hamilton). Let V = (A1, A2;H,Φ, E;σ1, σ2, γ
in, γout) be an

irreducible two operator vessel, and ∆(z1, z2) its discriminant polynomial. Then the operators
A1, A2 satisfy the algebraic equations

∆(A1, A2) = 0, ∆(A∗1, A
∗
2) = 0.

One can derive the classical Cayley-Hamilton theorem from this Theorem. Indeed, let A be an
operator on a finite-dimensional Hilbert space H of dimension m. We put A1 = A, A2 = iI and
embed these two operators in a vessel following the procedure that we have explained above. The
space E is defined by

E =
1

i
(A1 −A∗1)H +

1

i
(A2 −A∗2)H = H.

Here the second equality comes from A2 − A∗2 = 2iI. Hence, Φ = PE = I. The rates are defined
by

σ1 =
1

i
(A−A∗), σ2 = 2I,

and the gyrations can be computed as

γin = γin12 =
1

i
(A1A

∗
2 −A2A

∗
1) = −(A+A∗),

γout = γout12 =
1

i
(A∗2A1 −A∗1A2) = −(A+A∗).
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Hence, the discriminant polynomial is

∆(z1, z2) = det
(
z12Ĩ + z2i(Ã− Ã∗)− (Ã+ Ã∗)

)
,

where Ĩ and Ã are the corresponding matrices. Hence, the conclusion of the theorem corresponds
to

0 = ∆(A1, A2) = det
(
2AĨ − I(Ã− Ã∗)− I(Ã+ Ã∗)) = 2m det(AĨ − IÃ).

Recall that the classical Cayley-Hamilton theorem states that the polynomial

p(z) = det(zĨ − Ã)

satisfies p(A) = 0, but this is just the identity

det(AĨ − IÃ) = 0.

An important tool in the study of two operator vessels is the joint characteristic function.
We have seen that one can define a complete characteristic function S(ξ, z), ξ ∈ Cn, z ∈ C for
commutative colligations, and therefore also for vessels. In the case of a two operator vessel, the
complete characteristic function has the form

S(ξ1, ξ2, z) = I − iΦ(ξ1A1 + ξ2A2 − zI)−1Φ∗(ξ1σ1 + ξ2σ2).

This is a function of three complex variables, but because of homogeneity, it can be thought of
as a function of two independent complex variables. We have also seen that for single operator
colligations, there is a relation between the factorizations of its characteristic function and the
invariant subspaces of the operator in the colligation. However, functions of two complex variables
do not admit a good factorization theory, so the complete characteristic function of a two operator
vessel is not a good analogue to study invariant subspaces.
The good analogue of the characteristic function for two operator vessels is the joint character-

istic function Ŝ(z). If z = (z1, z2) ∈ D is a point on the discriminant curve, then the operator

S(ξ1, ξ2, ξ1z1 + ξ2z2)|Ein(z)

does not depend on the election of (ξ1, ξ2) ∈ C2 as long as

ξ1z1 + ξ2z2 /∈ σ(ξ1A1 + ξ2A2). (3.31)

Moreover, this operator maps Ein(z) into Eout(z). A proof of these facts can be seen in [LKMV95,
Theorem 4.3.1]. We will also give later a proof based on the system theoretical interpretation.
Hence, we can define the joint characteristic function

Ŝ(z) : Ein(z)→ Eout(z),

for all z = (z1, z2) ∈ D for which there exists (ξ1, ξ2) ∈ C2 such that (3.31) holds, by

Ŝ(z) = S(ξ1, ξ2, ξ1z1 + ξ2z2)|Ein(z).

One can think of Ein(z) and Eout(z) as vector bundles on the algebraic curve D. More precisely,
they are vector bundles on the desingularization of D (see Section 4.2 for an introduction to the
desingularization of an algebraic curve in a slightly different context). Hence, Ŝ plays the role of
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a bundle map on an algebraic curve, so it is a function of one independent complex variable, and
admits a good factorization theory.
The joint characteristic function has also an interpretation as a transfer function of the asso-

ciated system. We take a double frequency λ = (λ1, λ2) ∈ C2 and assume that the input, state
and output of the system are waves with this frequency:

u(t1, t2) = u0e
iλ1t1+iλ2t2 , f(t1, t2) = f0e

iλ1t1+iλ2t2 , v(t1, t2) = v0e
iλ1t1+iλ2t2 .

Then the input and output compatibility conditions (3.27) and (3.28) are

(λ1σ2 − λ2σ1 + γin)u0 = 0, (λ1σ2 − λ2σ1 + γout)v0 = 0.

This means that λ ∈ D, u0 ∈ Ein(λ) and v0 ∈ Eout(λ). If we integrate the system along any
temporal straight line (ξ1τ, ξ2τ), and apply the result obtained for the transfer function of a single
operator colligation, we get

v0 = S(ξ1, ξ2; ξ1λ1 + ξ2λ2)u0.

This proves that S(ξ1, ξ2; ξ1z1 + ξ2z2)|Ein(z) does not depend on ξ, that it maps Ein(λ) into
Eout(λ) and that

v0 = Ŝ(λ)u0.

Finally, another important fact of the joint characteristic function is that the complete char-
acteristic function can be recovered from it by the so called restoration formula. Assume that
dimE = m and that the discriminant curve D has degree m (this is a non-degeneracy condition).
Fix a line ξ1y1 + ξ2y2 = z in C2 and assume that the line intersects D in m different points
p1, . . . , pm. Then the space E decomposes in direct sum as

E = E(p1) u · · ·u E(pm).

Let P (pj , ξ1, ξ2, z) be the projection onto E(pj) according to this decomposition. The restoration
formula allows one to recover the complete characteristic function by

S(ξ1, ξ2, z) =

m∑
j=1

Ŝ(pj)P (pj , ξ1, ξ2, z).

A proof of this fact can be found in [LKMV95, Section 10.3].
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4. Separating structures

This chapter contains the original part of this work. As we have stated in the Preface, our
objective is to construct a structure, called separating structure, which can be compressed to a
vessel and to which a vessel could be dilated.
First we deal with the topic of operator pools, which are structures built around two commuting

selfadjoint operators and which have some resemblance to vessels. In particular, a discriminant
curve can be assigned to them in the same way. Then we pass to separating structures, which
are the principal construction of this chapter. First we deal with the affine case, to show which
properties are just a consequence of linear algebra, and then we treat the orthogonal case and
show how an orthogonal separating structure produces a pool. Then we prove that under some
mild conditions, the discriminant curve of a separating structure is separated (see the Preface).
Finally, we give the definition of the generalized compression and show its application to separating
structures.

4.1. Operator pools

Definition. Let K be a Hilbert space, M a finite-dimensional Hilbert space, Φ : K → M an
operator, and A1, A2 two commuting selfadjoint operators on K. The tuple

Б = (A1, A2;K,Φ,M ;σ1, σ2, γ)

is called an operator pool if σj , γ are selfadjoint operators on M such that the following three
term relationship holds:

σ2ΦA1 − σ1ΦA2 + γΦ = 0. (4.1)

The operators σj are called rates and the operator γ is called gyration, as in the case of vessels
(see Chapter 3). We define the principal subspace of the pool Б as

K̂ =
∨

k1,k2≥0

Ak11 A
k2
2 Φ∗M. (4.2)

We say that the pool is irreducible if K = K̂. Typically, we will be considering irreducible pools.
Given a direction ξ = (ξ1, ξ2) ∈ C2, we will say that the direction ξ is nondegenerate if ξ1ξ2 /∈ R.

We will denote by Ξ the set of all nondegenerate directions:

Ξ = {ξ = (ξ1, ξ2) : ξ1ξ2 /∈ R}.

For every fixed nondegenerate direction ξ = (ξ1, ξ2) ∈ Ξ, the operator

Nξ = ξ1A1 + ξ2A2 (4.3)

is normal and (4.1) is equivalent to

α∗ξΦNξ + αξΦN
∗
ξ + γξΦ = 0, (4.4)
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4. Separating structures

where
αξ = i(ξ1σ1 + ξ2σ2), γξ = −2 Im(ξ1ξ2)γ. (4.5)

Now, we will construct a functional model for the pool Б using an L2 space of M -valued
functions. Let Eξ be the spectral measure of Nξ (see Appendix A.2). It is easy to see that

K̂ =
∨

k1,k2≥0

Nk1
ξ N

∗k2
ξ Φ∗M =

∨
Ω⊂C

Ω Borel

Eξ(Ω)Φ∗M. (4.6)

Here, the first equality is a direct consequence of (4.3). The second equality is true because the
polynomials in z and z are uniformly dense in C(σ(Nξ)), and the operator Eξ(Ω) is strong limit
of operators gn(Nξ), where gn ∈ C(σ(Nξ)), by the properties of the spectral measure.
We consider the non-negative matrix-valued measure eξ given by

eξ(Ω) = ΦEξ(Ω)Φ∗, Ω ⊂ C. (4.7)

Next, we define the space L2(eξ) of Borel functions C→M with the scalar product

〈f, g〉L2(eξ) =

∫
C
〈deξ(u)f(u), g(u)〉.

After factoring by the set {f : ‖f‖L2(eξ) = 0}, it becomes a Hilbert space. We have f = 0 in
L2(eξ) if and only if deξ(u)f(u) = 0 a.e. u ∈ C.
Recall that for every bounded Borel function g on C, we can define the operator g(Nξ) by

means of the spectral functional calculus (see Appendix A.2). This allows us to construct a
unitary Wξ : K̂ → L2(eξ).

Proposition 4.1. If Б is an irreducible pool, the operator Wξ given by

Wξg(Nξ)Φ
∗m = g(·)m

for m ∈M and g an arbitrary Borel function is well defined and extends by continuity to a unitary
Wξ : K̂ → L2(eξ). It also satisfies

(WξNξW
∗
ξ h)(u) = uh(u), (WξN

∗
ξW

∗
ξ h)(u) = uh(u) (4.8)

and
ΦW ∗ξ h =

∫
C
deξ(u)h(u), (4.9)

for every h ∈ L2(deξ).

Proof. First compute, for g, h Borel functions and m,n ∈M ,

〈g(Nξ)Φ
∗m,h(Nξ)Φ

∗n〉 =

∫
C

(hg)(u)〈dEξ(u)Φ∗m,Φ∗n〉 =

∫
C

(hg)(u)〈deξ(u)m,n〉

= 〈g(·)m,h(·)n〉L2(deξ)

= 〈Wξg(Nξ)Φ
∗m,Wξh(Nξ)Φ

∗n〉L2(deξ) .

Using (4.6), since {g(·)m : m ∈M, g bounded Borel} spans L2(eξ), we see that Wξ continues to
a unitary.
To prove equations (4.8) and (4.9), observe that they are trivial for h = g(·)m, with m ∈ M

and g bounded Borel, so they are also true for a general h ∈ L2(eξ) by continuity.
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The following Proposition will play an important role in the next section, because it will moti-
vate the definition of the discriminant curve of the pool.

Proposition 4.2. The following relation holds:

(uα∗ξ + uαξ + γξ)deξ(u) ≡ 0. (4.10)

Proof. Multiply (4.4) by W ∗ξ h on the right and use (4.8) and (4.9) to obtain∫
C

(uα∗ξ + uαξ + γξ)deξ(u)h(u) = 0.

Since this is true for every h ∈ L2(eξ), the Proposition follows.

4.2. The discriminant curve

The affine algebraic curve

Xaff = {(x1, x2) ∈ C2 : det(x1σ2 − x2σ1 + γ) = 0} (4.11)

is called the discriminant curve of the pool. The discriminant curve is a real algebraic curve,
equipped with the involution ∗ which sends p = (x1, x2) to p∗ = (x1, x2). The real part of the
curve is

Xaff,R = {p ∈ Xaff : p = p∗} = Xaff ∩ R2.

For a nondegenerate direction ξ = (ξ1, ξ2) ∈ Ξ, we introduce the coordinates (zξ, wξ) in C2. If
p = (x1, x2) ∈ C2, we put

zξ(p) = ξ1x1 + ξ2x2, wξ(p) = ξ1x1 + ξ2x2.

Then we see that in these coordinates, the equation of Xaff rewrites as

det(zξα
∗
ξ + wξαξ + γξ) = 0. (4.12)

The involution ∗ can be written in these coordinates as (zξ, wξ)
∗ = (wξ, zξ). Using this and

Proposition 4.2, we see that
supp eξ ⊂ zξ(Xaff,R). (4.13)

Moreover, if the pool Б is irreducible, we also have

σ(Nξ) = suppEξ = supp eξ,

so we get
σ(Nξ) ⊂ zξ(Xaff,R).

We will always assume that Xaff is a curve of full degree dimM . It is easy to see that this
happens if and only if

det(x1σ2 − x2σ1) 6≡ 0. (4.14)

In this case, αξ is invertible for a general direction ξ ∈ C2 (just put x2 = −ξ1, x1 = ξ2 in (4.14)).
This non-degeneracy condition (4.14) was already considered in the context of vessels in (3.15).
Whenever αξ is invertible, we define the operators

Σξ = −α−1
ξ α∗ξ , Dξ = −α−1

ξ γξ. (4.15)
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The equation of Xaff can be rewritten as

det(zξΣξ +Dξ − wξ) = 0

(here and in the sequel we use the notation λ for the matrix λI). This means that (zξ, wξ) ∈ Xaff
if and only if wξ ∈ σ(zξΣξ +Dξ). We use this to define a projection-valued function Qξ on Xaff.
If p ∈ Xaff, we put

Qξ(p) = Πwξ(p)(zξ(p)Σξ +Dξ)

the Riesz projection of the matrix zξ(p)Σξ + Dξ associated to the eigenvalue wξ(p) (see Ap-
pendix A.1). By the properties of the Riesz projections, we get, for every z0 ∈ C, the direct sum
decomposition

M =
∑
p∈Xaff
zξ(p)=z0

Qξ(p)M. (4.16)

We will also consider the projectivization X of the affine curve Xaff. We use projective coordi-
nates (ζ1 : ζ2 : ζ3) in CP2 and embed C2 in CP2 by

x1 =
ζ1

ζ3
, x2 =

ζ2

ζ3
.

The line ζ3 = 0 is the line at infinity. It will play an important role in the sequel. Since Xaff has
degree dimM , the projective curve X is

X = {(ζ1 : ζ2 : ζ3) ∈ CP2 : det(ζ1σ2 − ζ2σ1 + ζ3γ) = 0}.

The involution ∗ extends to CP2 by (ζ1 : ζ2 : ζ3)∗ = (ζ1 : ζ2 : ζ3), the curve X is a real projective
curve, and its real part XR is the set of points of X fixed by the involution.
If ξ = (ξ1, ξ2) ∈ Ξ is a nondegenerate direction, we define the projective coordinates in CP2

ηξ,1 = ξ1ζ1 + ξ2ζ2, ηξ,2 = ξ1ζ1 + ξ2ζ2, ηξ,3 = ζ3.

In these coordinates, the equation of X is

det(ηξ,1α
∗
ξ + ηξ,2αξ + ηξ,3γξ) = 0.

The functions zξ and wξ extend to meromorphic functions on CP2 by

zξ =
ηξ,1
ηξ,3

, wξ =
ηξ,2
ηξ,3

.

We define the points at infinity of X by

X∞ = {p ∈ X : ζ3(p) = 0}.

By the Fundamental Theorem of Algebra (or Bézout’s Theorem about the number of intersections
of two projective curves), X∞ is a set of dimM points counting multiplicities. Indeed, for a general
direction ξ ∈ C2, we can rewrite the equation of X as

det(ηξ,1Σξ + ηξ,3Dξ − ηξ,2) = 0.

From this, it follows that a point at infinity p ∈ CP2 with ζ3(p) = 0 is in X∞ if and only if
(wξ/zξ)(p) ∈ σ(Σξ).
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Now we will construct X̂ the blow-up or desingularization of X. Assume that the polynomial
det(x1σ2 − x2σ1 + γ) decomposes in irreducible factors over C[x1, x2] as

det(x1σ2 − x2σ1 + γ) =

J∏
j=1

pj(x1, x2)mj ,

where all the polynomials pj(x1, x2) are distinct. Then we say that X has J components,
pj(x1, x2) = 0 is the (affine) equation of the j-th component Xj , and mj is the multiplicity
of Xj . An affine point p ∈ Xaff will be called regular if

∂

∂xk

∣∣∣∣
p

 J∏
j=1

pj(x1, x2)

 6= 0

for k = 1 or k = 2. The set of regular points, which will be denoted by X0, has a natural Riemann
surface structure, and X \X0 is a finite collection of points. The blow-up X̂ is a compact Riemann
surface with J connected components X̂j and a surjective continuous map πX : X̂ → X such
that the restriction πX |π−1

X (X0) is an isomorphism of Riemann surfaces. The blow-up can be
constructed by gluing a finite number of points to X0 (see, for instance, [Mir95, Section III.2]).
We put X̂0 = π−1

X (X0) and observe that X̂ \ X̂0 is finite.
The meromorphic functions zξ, wξ in CP2 induce meromorphic functions in X̂, which we will

denote by the same letters:

zξ(p) = zξ(πX(p)), wξ(p) = wξ(πX(p)), p ∈ X̂.

The involution ∗ maps X0 onto X0, so it induces an antianalytic involution in X̂ (which we
will also call ∗) by πX(p∗) = πX(p)∗ for p ∈ X0, and then extending ∗ to all of X̂ by continuity.
The real part of X̂, denoted by X̂R, is the set of points fixed by the involution. By definition,
πX(X̂R ∩ X̂0) = XR ∩ X0. However, the set XR might be larger that πX(X̂R) (although it will
only differ by a finite number of points). Indeed, if p ∈ XR, then ∗ permutes the points in the
fibre π−1

X ({p}), but these points are not necessarily fixed by ∗ if the fibre has more than one point.
We define the points at infinity of X̂ by X̂∞ = π−1

X (X∞). Note that every connected component
X̂j contains points of X̂∞ (indeed degree(pj) points).
The function Qξ induces a projection-valued meromorphic function on X̂ (which we will also

denote by Qξ) defined by Qξ(p) = Qξ(πX(p)) for p ∈ X̂0.

4.3. Affine separating structures

Definition. Let N be an operator on a Hilbert space K. An affine separating structure for N is
a direct sum decomposition

K = H0,− uM− uM+ uH0,+ (4.17)

such that the channel space
M = M− +M+

is finite dimensional and

NH0,− ⊂ H−, NH− ⊂ H− +M+, NH+ ⊂ H+ +M−, NH0,+ ⊂ H+, (4.18)

where
H− = H0,− +M−, H+ = H0,+ +M+.
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4. Separating structures

According to the decomposition (4.17), we can write

N =


∗ R̃−2 0 0

T̃−1 Λ−1 R−1 0

0 T0 Λ0 R̃0

0 0 T̃1 ∗

 . (4.19)

The decomposition (4.17) also produces the dual decomposition

K = H ′0,− uM ′− uM ′+ uH ′0,+. (4.20)

Here we put
H ′0,− = (M− +M+ +H0,+)⊥

and analogously for the other subspaces:

M ′− = (H0,− +M+ +H0,+)⊥, M ′+ = (H0,− +M− +H0,+)⊥,

H ′0,+ = (H0,− +M− +M+)⊥.

We can make the duality identifications H ′0,− ∼= (H0,−)∗, and so on.
We denote by PH0,− , PM− , etc. the parallel projections corresponding to the summands in

(4.17). The projections corresponding to (4.20) are PH′0,− = P ∗H0,−
, etc. We also define the

channel operators
PM = PM− + PM+ , PM ′ = P ∗M = PM ′− + PM ′+ ,

the parallel projections
P− = PH− , P+ = PH+ ,

and the corresponding parallel projections for the dual decomposition.
We define s, the compression of N to M :

s = PMN |M.

We also define the operator α : M →M by

P+N −NP+ = αPM . (4.21)

It is easy to check that α is well defined and

α =

[
0 −R−1

T0 0

]
. (4.22)

Now we can define the mosaic ν and the almost diagonalizing transform V by

ν(z) = PM (N − z)−1P+(N − z)|M, z /∈ σ(N). (4.23)

(V x)(z) = PM (N − z)−1x, x ∈ K, z /∈ σ(N). (4.24)

An affine separating structure is called pure if

K =
∨

z /∈σ(N∗)

(N∗ − z)−1M.
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4. Separating structures

It is easy to see that a structure is pure if and only if its associated almost diagonalizing transform
V is injective. In this case, the transform V gives an analytic model for the structure.
If ω = (K,N,H0,−,M−,M+, H0,+) is an affine separating structure, then

ω∗ = (K,N∗, H ′0,−,M
′
−,M

′
+, H

′
0,+) (4.25)

is also an affine separating structure, called the dual structure. We denote by ν∗ and V∗ the
mosaic and the almost diagonalizing transform assigned to the dual structure.

Example 4.3. This example concerns the relation between separating structures and subnormal
operators, and it will be continued by giving additional examples throughout the rest of this
chapter. A subnormal operator S ∈ B(H) is, by definition, an operator having an extension (see
Section 1.1) to a normal operator N ∈ B(K), with K ⊃ H. We say that S is pure if no nontrivial
subspace of H reduces S to a normal operator. The normal extension N is called minimal if
K =

∨
n≥0N

∗nH. Every subnormal operator has a minimal normal extension. The subnormal
operator S is said to be of finite type if its self-commutator C = S∗S − SS∗ has finite rank. See
[Con91] for a treatment of the theory of subnormal operators.
A pure subnormal operator of finite type S and its minimal normal extension N can be used

to construct a separating structure in the following way. The operator N and the space K of the
structure will be the minimal normal extension N and the space on which it acts. The space H+

is going to be H, the subspace on which S acts, and H− is going to be K 	H. To do this, we
start by putting M+ = CH, which has finite dimension because S is of finite type. Then we put
H0,+ = H 	 CH.
The operator N has the structure

N =

[
S′∗ 0
X S

]
(4.26)

according to the decomposition K = (K 	 H) ⊕ H. The operator S′ is pure subnormal and is
called the dual of S. Using the fact that N is normal, we get the equalities

XX∗ = S∗S − SS∗ = C, (4.27)
X∗X = S′∗S′ − S′S′∗ = C ′, (4.28)

where C ′ is the self-commutator of S′. We note that

X(K 	H) = XX∗H = CH = M+.

Here the first equality comes from the fact that kerX = (K 	H)	X∗H. We see that

C ′(K 	H) = X∗M+,

so that C ′ has finite rank and S′ is pure subnormal of finite type.
We can define M− = C ′(K 	 H) and H0,− = (K 	 H) 	M−. Now we have to check that

conditions (4.18) are satisfied. We have

NH− ⊂ S′∗(K 	H) +X(K 	H) ⊂ H− +M+.

The inclusion NH+ ⊂ H+ +M− is trivial. Indeed, NH+ ⊂ H+, which shows that NH0,+ ⊂ H+

is also trivial. It remains to show that NH0,− ⊂ H−.

58



4. Separating structures

We have
kerX∗ = H 	X(K 	H) = H 	M+ = H0,+. (4.29)

This implies M− = X∗M+ = X∗H+. Hence, kerX = H0,−. It follows that

NH0,− ⊂ S′∗H0,− +XH0,− = S′∗H0,− ⊂ H−.

Hence, we see that ω = (K,N,H0,−,M−,M+, H0,+) is a separating structure. Moreover, the
decomposition K = H0,− ⊕ M− ⊕ M+ ⊕ H0,+ is orthogonal. Thus, ω is a particular kind of
separating structure, called orthogonal separating structure, which will be introduced in the next
section.
From what we have done, it also follows that X mapsM− ontoM+ and X∗ mapsM+ ontoM−.

Hence, the dimensions of M− and M+ coincide and T0 = PM+N |M− = X|M− is an isomorphism
from M− to M+. This will play a role later. Also, note that the operator R−1 from (4.19) is 0.
Another important fact about subnormal operators is that M+ = CH is invariant for S∗ (this

is easy to prove; see [Con91, Section II.3, exercises 6 and 7]). The operator (S∗|M+)∗ is just
the operator Λ0 in (4.19). The pair of operators (C,Λ0) determines the subnormal operator S.
The associated algebraic curve constructed in [Yak98a] is given in terms of this pair (there, the
operator Λ0 is denoted just by Λ). ♠

The following Theorem lists the main properties of the almost diagonalizing transform and the
mosaic.

Theorem 4.4. Suppose that ω is an affine separating structure. Denote by V K the image of the
almost diagonalizing transform V , endowed with the Hilbert space structure inherited from K (i.e.,
the unique structure that makes V : K 	 kerV → V K a unitary). Then the following statements
are true:

(i) V K is a reproducing kernel Hilbert space ofM -valued holomorphic functions on Ω = Ĉ\σ(N)
which vanish at ∞.

(ii) ν is a holomorphic projection-valued function on Ω. The operator Pν defined by (Pνf)(z) =
ν(z)f(z) for f ∈ V K is a parallel projection on V K.

(iii) V almost diagonalizes N :

(V Nx)(z) = z(V x)(z)− [z(V x)(z)]|z=∞.

(iv) V transforms the resolvent operator (N−z)−1 into the operator f(u) 7→ (f(u)−f(z))/(u−z):

(V (N − z)−1x)(u) =
(V x)(u)− (V x)(z)

u− z
.

(v) V transforms P+ into the operator Pν , i.e., V P+ = PνV .

(vi) We have the following formula for the mosaic:

ν(z) = PM (N − z)−1α+ PM+ .

In particular, ν(∞) = PM+ and

ν(z)m = (V αm)(z) + PM+m, m ∈M.
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(vii) We have

(V (N − z)−1αm)(u) =
ν(u)− ν(z)

u− z
m, m ∈M.

Proof. Statement (i) is clear from the definition of the transform V . To prove (ii), we first observe
that

P+(N − z)PM = P+(N − z)(I − PH0,+) = P+(N − z)− (N − z)PH0,+ .

Hence,

PM (N − z)−1P+(N − z)PM (N − z)−1 = PM (N − z)−1P+ − PMPH0,+(N − z)−1

= PM (N − z)−1P+.
(4.30)

Multiplying this equality by x ∈ K on the right, we get (v). Also, multiplying by P+(N − z)|M
on the right, we get ν2(z) = ν(z). This implies that ν is projection-valued. The operator Pν is
bounded by (v), and hence, it is a parallel projection.
To prove (iii) we observe that

(V Nx)(z) = PM (N − z)−1Nx = PMx+ z(V x)(z).

It is easy to check from the definition that [z(V x)(z)]|z =∞ = −PMx.
Part (iv) is obtained directly from the definition of V . To check (vi), we compute

ν(z) = PM (N − z)−1P+(N − z)|M
= PM (N − z)−1[P+(N − z)− (N − z)P+]|M + PM (N − z)−1(N − z)P+|M
= PM (N − z)−1α+ PM+ .

The remaining of (vi) is obvious and (vii) is a direct consequence of (iv) and (vii).

Now we will do a brief geometric study of the mosaic ν. Define, for z /∈ σ(N), the following
two subspaces of M :

F̃ (z) = PM (N − z)−1H+, G̃(z) = PM (N − z)−1H−. (4.31)

Proposition 4.5. The space M decomposes in direct sum as

M = F̃ (z) u G̃(z)

for every z /∈ σ(N). The operator ν(z) is the projection onto F̃ (z) parallel to G̃(z).

Proof. If m ∈M , put h− = P−(N − z)m, and h+ = P+(N − z)m. Then h− ∈ H− and h+ ∈ H+.
It follows that m− = PM (N − z)−1h− ∈ G̃(z), and m+ = PM (N − z)−1h+ ∈ F̃ (z). Moreover,
m− +m+ = m. This shows that M = F̃ (z) + G̃(z).

We must check that F̃ (z)∩G̃(z) = 0. To do this, takem ∈ F̃ (z) and writem = PM (N−z)−1h+,
where h+ ∈ H+. Multiplying (4.30) by h+ on the right and using formula (4.23) for the mosaic
ν(z), we get ν(z)m = m. Similarly, we see that if m ∈ G̃(z), then ν(z)m = 0. This shows that
F̃ (z) ∩ G̃(z) = 0 and that ν(z) is the projection onto F̃ (z) parallel to G̃(z).

An alternative proof of this Proposition can be given by observing that F̃ (z) = V (z)H− and
G̃(z) = V (z)H+. Then it is enough to use Theorem 4.4 (v).
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Here and in the sequel we will use the notation 1 for the identity matrix on a finite-dimensional
Hilbert space. If we put

E2
0(ν) = {v ∈ V K : v(z) ∈ ν(z)M = F̃ (z)}, (4.32)

E2
0(1− ν) = {v ∈ V K : v(z) ∈ (1− ν(z))M = G̃(z)}, (4.33)

then Theorem 4.4 (v) proves that

V H− = E2
0(1− ν), V H+ = E2

0(ν).

Example 4.6. A mosaic function µ(z) for a subnormal operator S appears in [Yak98a]. This
function is holomorphic on Ĉ\σ(N) and its values are parallel projections onM+. In the notation
of separating structures, it is defined by

µ(z) = αPM (N − z)−1|M+,

where N is the minimal normal extension of S. Using Theorem 4.4 (vi), we see that

αν(z) = µ(z)α, (4.34)

because R−1 = 0 in the case of a subnormal operator (see Example 4.3).
The spaces µ(z)M+ and (1 − µ(z))M+ play an important role in [Yak98b]. Using (4.34), we

see that
µ(z)M+ = αF̃ (z), (1− µ(z))M+ = αG̃(z).

Also, an almost diagonalizing transform Ũ appears in [Yak98b]. It is defined by

(Ũx)(z) = P+NP−(N − z)−1x,

and plays a similar role to V . For instance, Ũ transforms the projection P+ into the operator of
multiplication by µ(z) (c.f. Theorem 4.4 (v)). We see that

(Ũx)(z) = α(V x)(z).

Hence, the operator α, which in the subnormal case maps M onto M+, can be used to pass
from many of our constructions to the analogue constructions in [Yak98a,Yak98b]. ♠

The following two Lemmas are not used later but could be helpful to keep in mind. To interpret
these Lemmas, one should know that in the case considered in the following sections, the operator
α typically will be invertible.

Lemma 4.7. Assume that ω is pure. Then ν(z)m is constant if and only if αm = 0.

Proof. If ν(z)m is constant, then Theorem 4.4 (vii) shows that V (N − z)−1αm ≡ 0, so that
αm = 0, because ω is pure, and hence, V is injective. Conversely, if αm = 0, Theorem 4.4 (vi)
shows that ν(z)m = PM+m.

Lemma 4.8. There is the following relation between the mosaic ν of the structure ω and the
mosaic ν∗ of the dual structure ω∗:

(1− ν∗∗(z))α = αν(z).
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Proof. Recall that the dual structure ω∗ is defined by (4.25). We will denote by α∗ the operator
defined by (4.21) with the dual structure ω∗ in place of ω, i.e., the operator α∗ : M ′ →M ′ defined
by

P ′+N
∗ −N∗P ′+ = α∗PM ′ .

We see that α∗ = −α∗.
By Theorem 4.4 (vi),

ν∗(z) = PM ′+ − PM ′(N
∗ − z)−1α∗.

We get

ν∗∗(z)α+ αν(z) = PM+α− α(N − z)−1PMα+ αPM+ + αPM (N − z)−1α

= PM+α+ αPM+ = α.

Here the last equality can be seen by (4.22). This proves the Lemma.

4.4. Orthogonal separating structures

Definition. We say that an affine separating structure ω is orthogonal if N is normal and the
decomposition of K is orthogonal:

K = H0,− ⊕M− ⊕M+ ⊕H0,+. (4.35)

Given an orthogonal decomposition (4.35), A1, A2 two commuting selfadjoint operators on K
satisfying

AjH0,− ⊂ H−, AjH− ⊂ H− ⊕M+, AjH+ ⊂ H+ ⊕M−, AjH0,+ ⊂ H−, (4.36)

for j = 1, 2, and a direction ξ = (ξ1, ξ2) ∈ C2, the operator Nξ = ξ1A1 +ξ2A2 forms an orthogonal
separating structure ωξ with respect to (4.35). Conversely, given an operator N forming an
orthogonal separating structure, one can put A1 = ReN , A2 = ImN and form the family of
structures {ωξ : ξ ∈ C2} as above.
It will be convenient to think of orthogonal separating structures in this way, as a family of

structures {ωξ : ξ ∈ C2} generated by two commuting selfadjoint operators A1, A2.
For each direction ξ ∈ C2, we obtain a separating structure ωξ with associated operator Nξ =

ξ1A1 + ξ2A2. Hence, we can apply the results of the preceding section to the structure ωξ. We
will mark with the subscript ξ the objects of the preceding section constructed for the operator
Nξ. Therefore, we will write Vξ, νξ, Λ−1ξ, Λ0ξ, R−1ξ, T0ξ, etc.
In the next Theorem, we relate the orthogonal separating structure {ωξ} with the notion of

pool given in Section 4.1.

Theorem 4.9. If {ωξ} is an orthogonal separating structure, we can construct a pool

Б = (A1, A2;K,Φ,M ;σ1, σ2, γ),

by defining Φ = PM and

σjPM = −i(P+Aj −AjP+), j = 1, 2,

γPM = i(A1P+A2 −A2P+A1).

The operators αξ defined in (4.5) coincide with the operators αξ defined by using (4.21) for
N = Nξ. Moreover, the operator γξ defined in (4.5) can be computed as

γξ = −(α∗ξsξ + αξs
∗
ξ). (4.37)
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Proof. Conditions (4.36) imply that σj are well defined. If T = i(A1P+A2−A2P+A1), then (4.36)
implies that K 	M ⊂ kerT . Since T is selfadjoint, then M ⊃ TK, so γ is also well defined. The
operators σj and γ are clearly self adjoint. We compute

σ2PMA1 − σ1PMA2 = −i(P+A2 −A2P+)A1 + i(P+A1 −A1P+)A2 = −γPM ,

so Б is a pool.
A simple computation yields that the operator αξ defined by (4.5) coincides with the operator

αξ appearing in (4.21). To check (4.37), just restrict (4.4) to M .

Example 4.10. As we already commented in Example 4.3, the separating structure generated
by a subnormal operator S is orthogonal. Now we will compute the discriminant curve of its
associated pool, according to Theorem 4.9. We fix ξ = (1, i) so that the operator Nξ is just the
minimal normal extension N . Thus, we will omit the subscript ξ in the rest of this example.
We have,

α =

[
0 0
T0 0

]
, s =

[
Λ−1 0
T0 Λ0

]
.

Using formula (4.37) for γ, we see that the equation for the discriminant curve (4.12) is

det(zα∗ + wα+ γ) = det

([
−T ∗0 T0 zT ∗0 − T ∗0 Λ0

wT0 − T0Λ∗−1 −T0T
∗
0

])
= det

([
T ∗0 0
0 T0

] [
−T0 z − Λ0

w − Λ∗−1 −T ∗0

])
= |detT0|2 det

([
−T0 z − Λ0

w − Λ∗−1 −T ∗0

])
= |detT0|2 detT0 det(−T ∗0 + (w − Λ∗−1)T−1

0 (z − Λ0))

= |detT0|2 det(−T0T
∗
0 + T0(w − Λ∗−1)T−1

0 (z − Λ0))

= −|detT0|2 det(C − (w − Λ∗0)(z − Λ0)).

Here we have used T0T
∗
0 = C, which comes from (4.27) and T0Λ∗−1 = Λ0T0, which is obtained

using the fact that N is normal (and R−1 = 0).
The equation for the discriminant curve associated to the subnormal operator S in [Yak98a,

Yak98b] was precisely
det(C − (w − Λ∗0)(z − Λ0)) = 0.

Therefore, this shows that the discriminant curve of the corresponding pool is the same curve. ♠

The next Proposition relates the concepts of purity of a separating structure and irreducibility
of a pool.

Proposition 4.11. Let {ωξ} be an orthogonal separating structure and Б its associated pool,
according to Theorem 4.9. Assume that the discriminant curve Xaff of Б is not all of C2. Then
the following statements are equivalent:

(i) The separating structure ωξ is pure for some nondegenerate direction ξ ∈ Ξ.

(ii) The separating structure ωξ is pure for every nondegenerate direction ξ ∈ Ξ.

(iii) The pool Б is irreducible.
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Proof. First we show (i)⇒ (iii), so we assume that ωξ is pure for a certain direction ξ ∈ Ξ. This
means that the set

K0 = {(N∗ξ − w)−1m : m ∈M,w /∈ σ(N∗)}
spans K. Since the function (z − w)−1, w /∈ σ(N∗) can be approximated uniformly in σ(N) by
polynomials in z and z by the Stone-Weierstrass theorem (see, for instance, [Rud91, Theorem
5.7]), it follows that every member of the set K0 can approximated by some p(Nξ, N

∗
ξ )m, where p

is a polynomial in two variables. By (4.6), we see that K0 ⊂ K̂, where K̂ is the principal subspace
of Б. This means that K̂ must also span K, so that K̂ = K and the pool Б is irreducible.
Now we show (iii) ⇒ (ii), so we assume that Б is irreducible and take an arbitrary direction

ξ ∈ Ξ. The set
K1 = {p(Nξ, N

∗
ξ )m : m ∈M,p ∈ C[z, z]}

spans K. Since the discriminant curve X is not all of C2 and the spectrum of Nξ lies in zξ(Xaff,R),
we see that σ(Nξ) has area 0. By the Hartogs-Rosenthal theorem (see [Con91, Theorem V.3.6]),
every continuous function on σ(Nξ) can be uniformly approximated by rational functions with
poles outside σ(Nξ). This applies to any polynomial p(z, z). Since every rational function with
poles outside σ(Nξ) can be approximated uniformly in σ(Nξ) by a linear combination of functions
of the form (z − wk)−1, zk /∈ σ(Nξ), we see that the vector p(Nξ, N

∗
ξ )m can be approximated by

a linear combination of vectors (Nξ − wk)−1m. This shows that if

K2 =
∨

w/∈σ(Nξ)

(Nξ − w)−1M,

thenK1 ⊂ K2. Hence, we getK2 = K. This implies that ωξ is pure, because N
∗
ξ

= Nξ. Therefore,
we get (ii), because ξ ∈ Ξ was arbitrary.
The remaining implication (ii)⇒ (i) is trivial.

Example 4.12. Consider a pure subnormal operator of finite type S, the separating structure it
generates according to Example 4.3, and its associated pool Б. We will show that the purity of
S implies the irreducibility of Б.
Put G+ = P+(K 	 K̂). Since M+ ⊂ K̂, we have G+ ⊂ H0,+. Using this, it is easy to check

that G+ is invariant for N and N∗. We have N |G+ = S|G+, because N |H+ = S. Moreover,
(4.26) and (4.29) imply that N∗|H0,+ = S∗|H0,+. Hence, N∗|G+ = S∗|G+. It follows that G+

reduces S to a normal operator. Since S is pure, it must be G+ = 0.
Similarly, one can prove that G− = P−(K 	 K̂) = 0. One has to follow the reasoning above

interchanging N and N∗ and using the pure subnormal operator S′ = N∗|H− instead of S. Since
we have G− = G+ = 0, we get K 	 K̂ = 0, so the pool Б is irreducible. ♠

Now we will relate the analytic model for the separating structure, constructed in terms of
the almost diagonalizing transform Vξ and the L2 model for the pool, constructed in terms of
the transform Wξ, by means of the Cauchy operators. First, observe that there exists a positive
scalar measure ρξ and a matrix-valued ρξ-measurable function Eξ such that

deξ(z) = Eξ(z)dρξ(z),

The Cauchy operators are defined by

(Kξf)(z) =

∫
C

f(u)

u− z
dρξ(u),

(Kξf)(z) =

∫
C

f(u)

u− z
dρξ(u).
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We will also denote by Eξ the operator of multiplication by Eξ(z) in L2(deξ).

Proposition 4.13. We have the following relation between the transforms of an orthogonal sep-
arating structure and its associated pool:

Vξ = KξEξWξ

Proof. For m ∈M , g bounded Borel and x = g(Nξ)m, we have

(Vξx)(z) = PM (Nξ − z)−1g(Nξ)m = PM

∫
C

g(u)

u− z
dEξ(u)m = (KξEξWξx)(z).

The Proposition follows by density.

Proposition 4.14. The mosaic νξ has the following integral representation:

νξ(z) = PM+ +

∫
C

deξ(u)αξ
u− z

.

Proof. It suffices to observe that

PM (Nξ − z)−1|M =

∫
C

deξ(u)

u− z

and to use Theorem 4.4 (vi).

The next Lemma is a bit technical but it will be very useful later. Recall that Qξ was the
projection-valued function defined on the discriminant curve (see Section 4.2).

Lemma 4.15. If αξ is invertible, we have

αξνξ(z)α
−1
ξ (zα∗ξ + γξ) = (zα∗ξ + γξ)νξ(z), (4.38)

Therefore νξ(z) commutes both with α−1
ξ (zα∗ξ + γξ) and with Qξ(p), for those p ∈ Xaff such that

zξ(p) = z.

Proof. To prove (4.38), using Proposition 4.14, we have to check that

αξPM+α
−1
ξ (zα∗ξ + γ) +

∫
C

αξdeξ(u)(zα∗ξ + γξ)

u− z

= (zα∗ξ + γξ)PM+ +

∫
C

(zα∗ξ + γξ)deξ(u)αξ

u− z
.

Now we use the identities αξPM+α
−1
ξ = PM− , and PM−α∗ξ = α∗ξPM+ , and rearrange terms to see

that the equation above is equivalent to

PM−γξ − γξPM+ =

∫
C

(zα∗ξ + γξ)deξ(u)αξ − αξdeξ(u)(zα∗ξ + γξ)

u− z
. (4.39)

Using (4.10) and the relation obtained from it by taking adjoints, we get

γξdeξ(u) = −(uα∗ξ + uαξ)deξ(u), deξ(u)γξ = −deξ(u)(uα∗ξ + uαξ).
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Substituting these identities into the right hand side of (4.39), we see that it equals∫
C
αξdeξ(u)α∗ξ − α∗ξdeξ(u)αξ = αξα

∗
ξ − α∗ξαξ.

Hence we just need to check that

PM−γξ − γξPM+ = αξα
∗
ξ − α∗ξαξ.

This is an easy computation with matrices, using (4.37), (4.19) and (4.22).
From (4.38), it is obvious that νξ(z) and α−1

ξ (α∗ξz + γξ) commute. The fact that νξ(z) and
Qξ(p) commute is a consequence of the definition of Qξ(p) and the properties of the Riesz-Dunford
calculus (see Appendix A.1).

Proposition 4.16. If αξ is invertible, we have

PM (Nξ − z)−1(N∗ξ − w)−1PM = (γξ + zα∗ξ + wαξ)
−1(PM − αξν(z)α−1

ξ PM − ν∗ξ (w)PM ),

for every pair (z, w) such that z, w /∈ σ(N) and (z, w) /∈ Xaff.

Proof. First rewrite (4.4) as

α∗ξPM (Nξ − z) + αPM (N∗ξ − w) + (γξ + zα∗ξ + wαξ)PM = 0.

Multiplying by (Nξ − z)−1(N∗ξ − w)−1PM on the right and rearranging terms, we get

PM (Nξ − z)−1(N∗ξ − w)−1PM =

− (γξ + zα∗ξ + wαξ)
−1[α∗ξPM (N∗ξ − w)−1PM + αξPM (Nξ − z)−1PM ].

(4.40)

By Theorem 4.4 (vi),

α∗ξPM (N∗ξ − w)−1PM = ν∗ξ (w)PM − PM+ .

Also,

αξPM (Nξ − z)1PM = αξ(νξ(z)− PM+)α−1
ξ PM = αξνξ(z)α

−1
ξ PM − PM− ,

because αPM+ = PM−α. The Proposition follows by substituting these two equalities into (4.40).

This Proposition implies that the data αξ, γξ, νξ completely determines the separating structure
{ωξ} whenever the structure is pure. Indeed, we see from the Proposition that the inner product

〈(N∗ξ − w)−1m, (N∗ξ − z)−1m′〉 m,m′ ∈M, z,w /∈ σ(Nξ),

depends only on αξ, γξ, νξ and m,m′, z, w.
If we have two pure structures {ωξ} and {ω̃ξ} with the same data αξ, γξ, νξ, then the operator

Z defined by
Z(N∗ξ − w)−1m = (Ñ∗ξ − w)−1m

continues to a unitary operator. By the Riesz-Dunford functional calculus (see Appendix A.1),
we see that

ZN∗ξ x = Ñ∗ξZx,
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for vector of the form x = (N∗ξ −w)−1m, and hence for every x ∈ K by density. This shows that
Nξ and Ñξ are unitarily equivalent.
Below we will see that in many cases, the mosaic function νξ can be computed from the matrices

αξ and γξ alone by using the so called restoration formula and the discriminant curve (which, of
course, is defined solely in terms of αξ and γξ).
Our goal now is to define the two halves of X̂. This is a partition of X̂ \X̂R in two sets X̂−, X̂+

such that ∗(X̂−) = X̂+, and such that we can recover the mosaic νξ by the restoration formula

νξ(z) =
∑
p∈X̂+

zξ(p)=z

Qξ(p),

where Qξ is the projection-valued meromorphic function on X̂ that was defined in Section 4.2.
First recall the definition of Σξ from (4.15) and note that

Σξ =

[
Σ−ξ 0

0 Σ+
ξ

]
, where Σ−ξ = T−1

0ξ R
∗
−1ξ, and Σ+

ξ = R−1
−1ξT

∗
0ξ.

Hence, σ(Σξ) = σ(Σ−ξ ) ∪ σ(Σ+
ξ ) and the map λ 7→ λ

−1 interchanges σ(Σ−ξ ) and σ(Σ+
ξ ).

We will assume from now on that

σ(Σ−ξ ) ∩ σ(Σ+
ξ ) = ∅. (S)

This happens, for instance, if X∞ is a set of dimM different points, because then all the eigen-
values of Σξ are distinct.
We define the meromorphic function λξ on X̂ by

λξ(p) =

(
wξ
zξ

)
(p), p ∈ X̂.

If (S) holds, we can partition X̂∞ = X̂−∞ ∪ X̂+
∞, where we put

X̂±∞ = {p ∈ X̂∞ : λξ(p) ∈ σ(Σ±ξ )}

(recall that if p ∈ X̂∞, then λξ(p) ∈ σ(Σξ)).
Now we give a Lemma which relates the behaviour of νξ(zξ(p)) and Qξ(p) for p near X̂∞.

Lemma 4.17. Define

ϕ+(p) = [1− νξ(zξ(p))]Qξ(p), p ∈ X̂ \ z−1
ξ (σ(Nξ))

ϕ−(p) = νξ(zξ(p))Qξ(p), p ∈ X̂ \ z−1
ξ (σ(Nξ)).

If p0 ∈ X̂+
∞, then ϕ+ vanishes in a neighbourhood of p0. If p0 ∈ X̂−∞, then ϕ− vanishes in a

neighbourhood of p0.

Proof. Recall that if p ∈ X̂ is such that zξ(p) 6= 0, then λξ(p) ∈ σ(Σξ + zξ(p)
−1Dξ). Let V ⊂ C

be an open disk with centre λξ(p0) and such that V does not contain any other eigenvalue of Σξ.
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If q is a point in X̂ and λξ(q) ∈ V , let ∆q be a simple closed curve in C around λξ(q) which
is positively oriented, is contained entirely inside V , and is such that no other eigenvalue of
Σξ + zξ(q)

−1Dξ lies inside ∆q. Recall that if such point q satisfies q ∈ X̂0 and zξ(q) 6= 0, then

Qξ(q) = Πλξ(q)(Σξ + zξ(q)
−1Dξ) =

1

2πi

∫
∆q

(
λ− Σξ − zξ(q)−1Dξ

)−1
dλ.

Put
L(z) = {q ∈ X̂ : zξ(q) = z, λξ(q) ∈ V }.

For z ∈ Ĉ near ∞, no eigenvalue of the matrix Σξ + z−1Dξ lies on ∂V , by continuity of the
spectrum. Hence, for a general z ∈ Ĉ near ∞,∑

q∈L(z)

Qξ(q) =
1

2πi

∫
∂V

(
λ− Σξ − z−1Dξ

)−1
dλ.

Since
Πλξ(p0)(Σξ) =

1

2πi

∫
∂V

(λ− Σξ)
−1dλ,

it follows that ∑
q∈L(z)

Qξ(q) −−−→
z→∞

Πλξ(p0)(Σξ). (4.41)

Assume that p0 ∈ X̂+
∞. This means that λξ(p0) ∈ σ(Σ+

ξ ). Put

ψ(z) = (1− νξ(z))

 ∑
q∈L(z)

Qξ(q)

 .

Since Qξ(q) and νξ(zξ(q)) commute for q ∈ X̂0 \z−1
ξ (σ(Nξ)) (see Lemma 4.15), ψ(z) is projection-

valued and meromorphic in a punctured neighbourhood of∞. Also, by (4.41), we have ψ(∞) = 0,
because νξ(∞) = PM+ and PM−Πλξ(p0)(Σξ) = 0. Since ψ(z) is continuous at z = ∞, it follows
that ψ(z) vanishes in a neighbourhood of ∞.
The proof of the Lemma for the case when p0 ∈ X̂+

∞ concludes by observing that

ϕ+(p) = ψ(zξ(p))Qξ(p)

for a general p near p0. The case where p0 ∈ X̂−∞ is treated in a similar way.

We claim that, if (S) holds, then X̂R ∩ X̂∞ = ∅. To see this, observe that Σξ cannot have
eigenvalues λ with |λ| = 1, because such an eigenvalue will be fixed by the map λ 7→ λ

−1, but
this map interchanges the disjoint sets σ(Σ−ξ ) and σ(Σ+

ξ ). If p ∈ X̂R, then |λξ(p)| = 1, because
zξ(p) = wξ(p). Hence, p /∈ X̂∞, because Σξ has no eigenvalues of modulus 1.
Put

Γ = zξ(X̂R).

Since X̂R ∩ X̂∞ = ∅, we see that Γ is a compact curve in C. In particular, X̂∞ ∩ z−1
ξ (Γ) = ∅. It is

worthy to note that the mosaic νξ is holomorphic on Ĉ \ Γ except for a finite number of points.
Indeed, by Lemma 4.14, it is holomorphic outside the support of eξ. Using (4.13), it suffices to
note that Xaff,R and X̂R differ by a finite number of points.
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For the proof of the next Lemma, we will need to use the following version of the Privalov-
Plemelj jump formula. Let Γ : [0, 1] → C be a parametrized piecewise smooth curve. We also
denote by Γ its image Γ([0, 1]). This curve has a well defined tangent except at a finite number
of points. Let ψ(s) be the angle that the tangent line at Γ(s) makes with the real axis.
Let F be a function defined on C \ Γ and fix a point z0 = Γ(s0) ∈ Γ. Put ψ0 = ψ(s0). Let

z±,ε = z0 ± εieiψ0

be the two points z−,ε and z+,ε that are on the line normal to Γ at z0 and are at a distance ε of
z0. If the limit

lim
ε→0

F (z+,ε)− F (z−,ε)

exists, we call that number the jump of F at z0 and we denote it by JumpF (z0).
Now we consider µ a finite complex Borel measure on Γ and its Cauchy integral

F (z) =
1

2πi

∫
Γ

dµ(u)

u− z
, z ∈ C \ Γ.

The function F (z) has nontangential boundary values from each side at almost every point of Γ.
Indeed, F belongs to the Smirnov class Ep(C \ Γ) for every p < 1. The jump of F at z0 ∈ Γ is
precisely the difference of these two boundary values.
Denote by dµ

|dz| the Radon-Nikodym derivative of the absolutely continuous part of µ with respect
to the arc-length measure on Γ, and put

dµ

dz
(z0) = e−iψ0

dµ

|dz|
(z0).

Then the Privalov-Plemelj jump formula states that

JumpF (z0) =
dµ

dz
(z0).

for almost every z0 ∈ Γ (with respect to arc-length measure on Γ).
See [CMR06] for a monograph devoted to the properties of the Cauchy integral in the case

when Γ = T. Many of the results mentioned above can be obtained from this case by conformal
mapping. Privalov’s results about the boundary behaviour of analytic functions were originally
published in [Pri50] in Russian. A German translation of this work can be found in [Pri56].
Unfortunately, the author is not aware of any English translation of these works. An introduction
to the Smirnov class Ep can be found in [Dur70, Chapter 10].
Another fact that we will need is Privalov’s uniqueness theorem. This states that if f is

holomorphic on a connected open set Ω bounded by a rectifiable curve and has zero nontangential
boundary values at a subset of positive measure of ∂Ω, then f is identically zero. It is easy to see
that this is also true for holomorphic functions on a Riemann surface. A proof of this theorem
for the case when Ω = D can be found in [Koo98, Section III.D].

Lemma 4.18. Let U be an open connected set in X̂ \ X̂R. If U ∩ X̂+
∞ 6= ∅, then

νξ(zξ(p))Qξ(p) = Qξ(p), p ∈ U \ z−1
ξ (Γ).

If U ∩ X̂−∞ 6= ∅, then
νξ(zξ(p))Qξ(p) = 0, p ∈ U \ z−1

ξ (Γ).
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Proof. We will give the proof for the case U ∩ X̂+
∞ 6= ∅. The other case is symmetric. Take

p0 ∈ U ∩ X̂+
∞, and define ϕ+(p) as in the previous Lemma. We know that ϕ+ ≡ 0 near p0. We

will use a continuation argument to show that ϕ+ ≡ 0 on all of U \ z−1
ξ (Γ).

Fix an arbitrary point p ∈ U \ z−1
ξ (Γ). We can make a finite list Ω0, . . . ,Ωk, where Ωj are

connected components of U \ z−1
ξ (Γ), the boundaries ∂Ωj and ∂Ωj+1 have a common arc Γj

contained in U , the point p0 lies in Ω0, and the point p lies in Ωk.
Since ϕ+ is identically zero on a neighbourhood of p0, it is identically zero on all Ω0. We are

going to prove that this implies that ϕ+ is also identically zero on Ω1. Iterating this argument,
we will finally show that ϕ+ is identically zero on Ωk. In particular, ϕ+(p) = 0. If we can show
that ϕ+ has zero nontangential limit from Ω1 at almost every q ∈ Γ0, the common arc of ∂Ω0

and ∂Ω1 inside U , then we will have ϕ+ ≡ 0 in Ω1 by the Privalov’s uniqueness theorem.
Since we are interested only on what happens a.e. on Γ0, we can take a q0 ∈ Γ0 such that

q0 ∈ X̂0 and dzξ(q0) 6= 0 (because X̂ \ X̂0 is finite, and dzξ(q) = 0 only for a finite number of
points q ∈ X̂). This second condition implies that z = zξ(q) gives a local coordinate near q0. We
put z0 = zξ(q0), and write everything using this coordinate z. We must study

ϕ+(z) = [1− νξ(z)]Qξ(z).

Since ϕ+(z) is identically zero for z on one side of Γ (the side corresponding to zξ(Ω0)), to
see that the nontangential limit from the other side at z0 is zero, it is enough to show that
Jumpϕ+(z0) = 0.
The function Qξ(z) is continuous at z0. Also, the nontangential boundary value of νξ(z) exists

a.e. on Γ, because by Proposition 4.14, νξ(z) − PM+ is the Cauchy integral of a finite Borel
measure. We assume that νξ(z) has nontangential boundary values at z0. Hence,

Jumpϕ+(z0) = JumpF (z0),

where
F (z) = −(νξ(z)− PM+)Qξ(z0).

The function F (z) is the Cauchy integral of the measure

−2πi deξ αξQξ(z0).

By the Privalov-Plemelj jump formula,

JumpF (z0) = −2πi
deξ
dz

(z0)αξQξ(z0).

We have wξ(q0) 6= zξ(q0), because U ∩ X̂R = ∅. Therefore, we can define a function ψ analytic
in a neighbourhood of σ(zξ(q0)Σξ+Dξ) such that ψ(u) = (u−zξ(q0))−1 in a small neighbourhood
of wξ(q0) ∈ σ(zξ(q0)Σξ +Dξ) and ψ(u) = 0 outside of this neighbourhood. Put

Ψ = ψ(zξ(q0)Σξ +Dξ).

Then we get by the Riesz-Dunford calculus (see Appendix A.1) that

Qξ(q0) = (zξ(q0)Σξ +Dξ − zξ(q0))Ψ.

This implies that

JumpF (z0) = −2πi
deξ
dz

(z0)αξ(z0Σξ +Dξ − z0)Ψ = 2πi
deξ
dz

(z0)(z0α
∗
ξ + z0αξ + γξ)Ψ.
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By the relation obtained by taking adjoints in (4.10), we see that

deξ
dz

(z0)(z0α
∗
ξ + z0αξ + γξ) = 0,

which implies that JumpF (z0) = 0. This finishes the proof, because it shows that ϕ+ has zero
jump at almost every point of Γ0, and therefore zero boundary value from Ω1 at almost every
point of Γ0. Hence, ϕ+ must be identically zero on Ω1 and we can iterate the argument.

Using this Lemma, we can define X̂− and X̂+, and prove the restoration formula for the mosaic
νξ.

Theorem 4.19. Assume that ξ ∈ Ξ is a nondegenerate direction such that αξ is invertible.
Suppose that (S) holds. Then there exists a partition of X̂ \ X̂R into two halves X̂− and X̂+ with
the following properties:

(a) Each half is the union of some of the connected components of X̂ \ X̂R.

(b) The two halves are conjugate: ∗(X̂−) = X̂+, and ∗(X̂+) = X̂−.

(c) If a component X̂j intersects X̂R, then it intersects both halves X̂− and X̂+.

(d) If a component X̂j does not intersect X̂R, then it is contained either in X̂− or in X̂+. More-
over, ∗(X̂j) is a different component of X̂.

(e) The restoration formula holds:

νξ(z) =
∑
p∈X̂+

zξ(p)=z

Qξ(p), z ∈ Ĉ \ Γ, (4.42)

where Γ = zξ(X̂R).

Proof. We define X̂− as the union of the connected components of X̂ \ X̂R which intersect X̂−∞,
and similarly for X̂+. By Lemma 4.18, X̂− and X̂+ are disjoint (note that Qξ(p) cannot vanish).
Now we observe that every connected component of X̂ \ X̂R must intersect X̂∞, and hence

X̂ = X̂− ∪ X̂R ∪ X̂+. Indeed, assume that U is a connected component of X̂ \ X̂R which doesn’t
intersect X̂∞. Let X̂j be the connected component of X̂ which contains U .
The theory of real algebraic curves shows that there are two possibilities for the (complex)

Riemann surface of an irreducible real algebraic curve: either the set of points not fixed by the
involution induced by complex conjugation is connected, or either it consists of precisely two
connected components, which are interchanged by the involution. In the second case, we say that
the surface is separated. See [GH81, Section 3] for an exposition of the topological properties of
real algebraic curves.
In our case, there are two possible cases: either X̂j contains no real point, or X̂j contains real

points, and hence, it is fixed by the involution ∗ (because ∗ permutes the components of X̂ and
some points of X̂j are fixed by ∗). In the first case, we have U = X̂j . This is a contradiction,
because X̂j must contain points of X̂∞.
In the second case, X̂j is the Riemann surface of an irreducible real algebraic curve. Since X̂j

contains points of X̂∞, and U and X̂R do not intersect X̂∞, the surface X̂j must be separated,
and U must be one of the two connected components of X̂j \ X̂R. Therefore, X̂j \ X̂R = U ∪∗(U).
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4. Separating structures

Since ∗ maps X̂∞ onto X̂∞, we see that ∗(U) does not intersect X̂∞. Hence, X̂j does not intersect
X̂∞. This is a contradiction again.
Therefore, we see that X̂− and X̂+ are a partition of X̂\X̂R. Property (a) holds by construction,

and it is also clear that (b) is true. Properties (c) and (d) are obtained using the fact that the
involution ∗ interchanges X̂−∞ and X̂+

∞.
To obtain the restoration formula, we use (4.16) to get the equation∑

p∈X̂
zξ(p)=z

Qξ(p) = IM .

Then we multiply this equation on the left by νξ(z) and use Lemma 4.18.

Example 4.20. In the case of the separating structure generated by a subnormal operator S,
the operator αξ has the form

αξ =
1

2

[
0 −(ξ1 + iξ2)T ∗0

(ξ1 − iξ2)T0 0

]
,

where T0 = X|M− (see Example 4.3). Hence, the operator Σξ is

Σξ = −α−1
ξ α∗ξ =


ξ1 − iξ2

ξ1 − iξ2
IM− 0

0
ξ1 + iξ2

ξ1 + iξ2
IM+ .


Therefore, the sets σ(Σ−ξ ) and σ(Σ+

ξ ) consist of only one point each. Moreover, we see that these
points are different if and only if the direction ξ is nondegenerate, i.e., if Im ξ1ξ2 6= 0. This means
that we can carry out the construction given above to define the halves X̂− and X̂+, as long as
we choose a general direction ξ. ♠

A necessary remark is that Theorem 4.19 does not prove that the discriminant curve X̂ is
separated in the sense that we gave in the Preface, which was that each component X̂ is divided
in two connected components when we remove its real points. Here, it may happen that some
components have no real points and so, belong either to X̂− or to X̂+, and there is a conjugate
component in the other half of the curve X̂. These components are in some sense degenerate.
However, this partition into halves X̂− and X̂+ should be good enough to allow the development
of the theory. For instance, in [Yak98a], it happened that the only degenerate components that
appeared were those of degree one.
Another remark is that the restoration formula (4.42) imposes a strong condition on the spec-

trum of Nξ. Using the restoration formula, we see that νξ(z) is discontinuous at Γ except for a
finite number of points. Since we know that νξ(z) is holomorphic outside supp eξ, we get that
Γ ⊂ supp eξ ⊂ σ(Nξ). We also know that eξ is supported in Γ and perhaps a finite number
of additional points. This implies that if the pool associated with the separating structure is
irreducible, then σ(Nξ) is precisely the curve Γ and perhaps a finite number of isolated points.

4.5. Generalized compression

This section deals with the notion of the generalized compression and its application to sepa-
rating structures to obtain vessels. First we will give the abstract definition of the generalized
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compression of a linear operator, and then we will pass to study it in the context of separating
structures.

Definition. Let K ⊃ H ⊃ G be vector spaces and A : K → K a linear map which satisfies the
two following conditions:

AG ∩H ⊂ G, (C1)

and
AH ⊂ AG+H. (C2)

Then we define the compression Ã : H/G → H/G by the following procedure. Given a vector
h ∈ H, using (C2), we can find a g ∈ G such that h′ = A(h− g) ∈ H. Then we define

Ã(h+G) = h′ +G.

To check that this is well defined, we must see that if h ∈ G, then h′ ∈ G, but this is a
consequence of (C1). Hence, the compression Ã is a linear map on the quotient space H/G.
In the context of Hilbert spaces, i.e., when K,H,G are Hilbert spaces and A ∈ B(K), one

should replace (C1) by
AG ∩H ⊂ G, (C1*)

and also require that if L = AG ∩ (K 	G), then

LuH is a direct sum (C3)

(note that L ∩H = 0 by (C1*)). Let

P : LuH → H (4.43)

be the parallel projection onto H according to this direct sum decomposition. Now we see that
(C2) implies that AH ⊂ L+H, and that the compression Ã is

Ã(h+G) = PAh+G, h ∈ H.

Hence, Ã is bounded and ‖Ã‖ ≤ ‖P‖‖A‖. If we identify the quotient space H/G with the space
R = H 	G, then we see that

Ã = PRPA|R. (4.44)

To see that this generalizes the classical notion of a compression, assume thatK = H1⊕H2⊕H3

and that A has the structure

A =

∗ 0 0
∗ A0 0
∗ ∗ ∗


according to this decomposition, so that A is a dilation of A0 and A0 is its classical compression
(see Section 1.1). Then we put G = H3, H = H2 ⊕H3. We have AG ⊂ G, so that (C1*) holds.
Also, AH ⊂ H, and (C2) holds. Moreover, L = 0, which implies that (C3) holds and P = IH
(see (4.43)). We identify the quotient H/G with the space R = H 	G = H2. Now, (4.44) shows
that Ã = PH2A|H2 = A0. Hence, in this setting, the generalized compression coincides with the
classical compression.
Since we are interested in compressing the operators A1, A2 in a separating structure to obtain

operators Ã1, Ã2 forming a (commutative) pool, we should know when the compressions of two
commuting operators also commute.
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4. Separating structures

Lemma 4.21. Assume that A1 and A2 are commuting linear maps on K and let Ã1 and Ã2 be
their respective compressions. If

A1A2G ∩H ⊂ G, (4.45)

then the compressions Ã1 and Ã2 commute.

Proof. Take an x ∈ H. Then there are vectors g, g′, l, l′ ∈ G such that

y = A1(x− g) ∈ H, y′ = A2(x− h′) ∈ H,
z = A2(y − l) ∈ H, z′ = A1(y′ − l′) ∈ H.

By definition of the compression, Ã2Ã1(x + G) = z + G and Ã1Ã2(x + G) = z′ + G. We must
check that z − z′ ∈ G. We compute

z − z′ = A2(A1(x− g)− l)−A2(A1(x− g′)− l′) = A1A2(g′ − g + l′ − l).

The vector on the right hand side of this equation is in A1A2G and the vector on the left hand
side is in H. It suffices to use (4.45).

Now we pass to the compression of separating structures. Recall that a tuple

ω = (K,A1, A2, H0,−,M−,M+, H0,+)

is called an orthogonal separating structure if A1 and A2 are selfadjoint operators on K,

K = H0,− ⊕M− ⊕M+ ⊕H0,+,

and

AjH0,− ⊂ H−, AjH− ⊂ H− +M+,

AjH+ ⊂M− +H+, AjH0,+ ⊂ H+,

for j = 1, 2, where
H− = H0,− +M−, H+ = M+ +H0,+.

Suppose that A1 and A2 are two selfadjoint operators onK which are included in two orthogonal
separating structures ω and ω̂, so that:

ω = (K,A1, A2, H0,−,M−,M+, H0,+), ω̂ = (K,A1, A2, Ĥ0,−, M̂−, M̂+, Ĥ0,+).

We write ω̂ ≺ ω if
H− ⊂ Ĥ−, H+ ⊃ Ĥ+. (4.46)

Observe that conditions (4.46) and those involved in the definition of the separating structures
ω and ω̂ remain invariant if we exchange the subscripts + and −, remove the hat ̂ from those
spaces which had it, and add it to those spaces which did not have it. This kind of symmetry will
be called hat-symmetry and will be useful later.
We will now construct the compression of two structures such that ω̂ ≺ ω. We start by defining

the operators βj : M+ →M− and β̂j : M̂+ → M̂− by

βj = PM−Aj |M+, β̂j = P
M̂−

Aj |M̂+, j = 1, 2. (4.47)
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Note that their adjoints are

β∗j = PM+Aj |M−, β̂∗j = P
M̂+

Aj |M̂−,

Using the formula given in Theorem 4.9 for the rates σj of the pool Б generated by ω and the
rates σ̂j of the pool Б̂ generated by ω̂, we see that

σj =

[
0 iβj
−iβ∗j 0

]
, σ̂j =

[
0 iβ̂j
−iβ̂∗j 0

]
, (4.48)

according to the decompositions M = M− ⊕M+ and M̂ = M̂− ⊕ M̂+.
Hence, if we assume the non-degeneracy condition (4.14) for both σ1, σ2 and σ̂1, σ̂2, replacing

A1 and A2 by t1A1 + t2A2 and t3A1 + t4A2, where tk ∈ R and t1t4 − t2t3 6= 0, we may assume
that

βj and β̂j are invertible, for j = 1, 2. (Iβ)

We will do so hereafter.
We define the space

R = Ĥ− 	H− = H+ 	 Ĥ+ = H+ ∩ Ĥ−. (4.49)

This space will be the compression space when we compress A1 and A2 to either Ĥ−/H− or
H+/Ĥ+, because it can be identified with both quotients.
We will need the following technical lemma.

Lemma 4.22. The following relation holds:

(PM− − I)M̂− ⊂ R.

Proof. First, (PM− − I)M̂− ⊂ Ĥ−, because M− ⊂ H− ⊂ Ĥ−. Second,

PH−(PM− − I)|M̂− = (PM− − PH−)|M̂− = −PH0,− |M̂−.

Since β̂1 is invertible,
M̂− = β̂1M̂+ = P

M̂−
A1M̂+.

Using PH0,−PĤ+
= 0, we get

PH0,−M̂− = PH0,−PM̂−A1M̂+ = PH0,−(P
M̂−

+ P
Ĥ+

)A1M̂+

= PH0,−A1M̂+ ⊂ PH0,−A1H+ = 0.

This implies the relation
PH0,−PM̂− = 0, (4.50)

which will be useful later.
We see that PH−(PM− − I)|M̂− = 0. This finishes the proof, because R = Ĥ− 	H−.

Now we define the operators τ− : M̂− →M− and τ+ : M̂+ →M+ by

τ− = PM− |M̂−, τ+ = PM+ |M̂+. (4.51)

Note that the adjoints of these operators are

τ∗− = P
M̂−
|M−, τ∗+ = P

M̂+
|M+.

The following Lemma relates these two operators with the possibility of compressing the operators
A1 and A2 using the generalized compression as defined above.
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Lemma 4.23. Put H = H+ and G = Ĥ+. The operators A1 and A2 satisfy the conditions (C1*),
(C2), and (C3) needed for the construction of their compressions to H+/Ĥ+ if and only if τ− is
invertible.
Similarly, the operators can be compressed to Ĥ−/H− if and only if τ+ is invertible.

Proof. First assume that τ− is invertible. We have

AjĤ+ ∩H+ ⊂ (M̂− + Ĥ+) ∩H+ = (M̂− ∩H+) + Ĥ+,

because Ĥ+ ⊂ H+. Now we check that

M̂− ∩H+ = 0, (4.52)

so that we get condition (C1*). Assume that x ∈ M̂− ∩ H+. Then τ−x = PM−x = 0, so that
x = 0, because τ− is invertible.
To prove condition (C2), we first check that

M− ⊂ H+ + M̂−. (4.53)

Take m− ∈M−. Since τ− is invertible, m− = τ−m̂− for some m̂− ∈ M̂−. Then, by Lemma 4.22,

m− − m̂− = (PM− − I)m̂− ∈ R ⊂ H+.

Hence, m− ∈ H+ + M̂−.
Now we see that

AjH+ ⊂ H+ +M− ⊂ H+ + M̂− = AjĤ+ +H+.

Here the last inequality comes from the fact that

AjĤ+ + Ĥ+ = M̂− + Ĥ+, (4.54)

which is true because β̂j is onto.
Condition (C3) holds because

L = AjĤ+ ∩ Ĥ− ⊂ M̂−,

so that L is finite-dimensional and therefore the sum LuH+ is always direct. Hence, Aj can be
compressed to H+/Ĥ+.
Let us now assume that Aj can be compressed to H+/Ĥ+ and prove that τ− is invertible. By

(C1*) for Aj instead of A,
AjĤ+ ∩H+ ⊂ Ĥ+.

Since (4.54) holds, we have M̂− ∩H+ ⊂ Ĥ+. This implies (4.52), and from this it follows that τ−
is injective. We also have

M− ⊂ AjH+ +H+ ⊂ AjĤ+ +H+ = M̂− +H+.

Here the first inclusion comes from the relation obtained by removing all the hats ̂ in (4.54) (the
relation obtained is true because βj is onto), the second inclusion comes from (C2) for Aj instead
of A, and the last equality uses again (4.54). Hence, we have (4.53), and from this it follows that
τ− is onto. This proves the first statement of the Lemma.
To prove the second statement, we apply hat-symmetry to see that A1, A2 can be compressed

to Ĥ−/H− if and only if τ∗+ (which is the hat-symmetric of τ−) is invertible.
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Lemma 4.24. The following relations hold:

βjτ+ = τ−β̂j , j = 1, 2.

Proof. Since M̂+ ⊂ Ĥ+ ⊂ H+,

Aj |M̂+ = AjPH0,+ |M̂+ +AjPM+ |M̂+.

Hence,
PM−Aj |M̂+ = PM−AjPH0,+ |M̂+ + PM−AjPM+ |M̂+ = βjτ+,

because PM−AjPH0,+ = 0.
Also, since AjM̂+ ⊂ Ĥ+ + M̂−,

PM−Aj |M̂+ = PM−PĤ+
Aj |M̂+ + PM−PM̂−Aj |M̂+ = τ−β̂j ,

because Ĥ+ ⊂ H+ implies PM−PĤ+
= 0. We have obtained the desired equality.

Since we assume that βj and β̂j are invertible (see (Iβ) on page 75), Lemma 4.24 implies that
τ+ is invertible if and only if τ− is invertible. By Lemma 4.23, we see that A1 and A2 can be
compressed to H+/Ĥ+ if and only if they can be compressed to Ĥ−/H−, and that this happens
whenever both τ− and τ+ are invertible. From now on, we will assume (Iβ) and

τ− and τ+ are invertible. (Iτ)

Now we are ready to give a formula for the compression of A1 and A2 to H+/Ĥ+.

Lemma 4.25. If we identify R with the quotient space H+/Ĥ+, then the compression of Aj to
H+/Ĥ+ has the form

Ãj = PR(Aj − τ−1
− βjPM+)|R.

Proof. We will write the proof for Ã1. The same argument applies to Ã2. Let h ∈ R. Then, by
definition of the compression, there is a g ∈ Ĥ+ such that A1(h−g) ∈ H+, and Ã1h = PRA1(h−g).
Now, since A1g ∈ Ĥ+ + M̂−, and R = H+ ∩ Ĥ−, we have PRA1g = PRPM̂−A1g. Since g ∈ Ĥ+,

we have P
M̂−

A1g = P
M̂−

A1PM̂+
g = β̂1PM̂+

g. Hence,

PRA1g = PRβ̂1PM̂+
g = PRτ

−1
− τ−β̂1PM̂+

g = PRτ
−1
− β1τ+PM̂+

g.

By hat-symmetry in (4.50), we get P
Ĥ0,+

PM+ = 0, which taking adjoints becomes PM+PĤ0,+
= 0.

This shows that
τ+PM̂+

|Ĥ+ = PM+(P
M̂+

+ P
Ĥ0,+

)|Ĥ+ = PM+ |Ĥ+.

Since g ∈ Ĥ+, we see that

PRA1g = PRτ
−1
− β1PM+g = PRτ

−1
− PM−A1PM+g = PRτ

−1
− PM−A1g.

Here the last equality holds because g ∈ H+ and PM−A1PH0,+ = 0. The condition A1(h−g) ∈ H+

implies PM−A1g = PM−A1h. Hence,

PRA1g = PRτ
−1
− PM−A1h = PRτ

−1
− β1PM+h,

where the last equality is true because h ∈ H+. This proves the Lemma, because Ã1h = PRA1(h−
g).
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We have two different options to construct the compression of Aj to R. We can either do the
compression to the quotient space H+/Ĥ+ or to the quotient space Ĥ−/H−. Both of these spaces
are identified with R, but the compression produces different operators. We decide to denote
by Ãj the compression of Aj to H+/Ĥ+. The surprising fact is that the compression of Aj to
Ĥ−/H− is just the adjoint Ã∗j .

Proposition 4.26. For j = 1, 2, let Ãj denote the compression of Aj to the quotient space
H+/Ĥ+, which we identify with R. Then the compression of Aj to the quotient space Ĥ−/H−,
also identified with R, is Ã∗j .
We also have the following formula for Ã∗j :

Ã∗j = PR(Aj − β∗j τ−∗− P
M̂−

)|R

(Here τ−∗+ = (τ−1
+ )∗).

Proof. By applying hat-symmetry to Lemma 4.25, we see that the formula for the compression
of Aj to Ĥ−/H− is

PR(Aj − τ−∗+ β̂∗jPM̂−)|R.

Note that R is hat-symmetric to itself, τ− is hat-symmetric to τ∗+, and βj is hat-symmetric to β̂∗j .
Now we compute the adjoint of the second part in the formula for Ãj given in Lemma 4.25,

using Lemma 4.24:

[PRτ
−1
− βjPM+ |R]∗ = PRβ

∗
j τ
−∗
− P

M̂−
|R = PRτ

−∗
+ β̂∗jPM̂− |R.

The first part now follows, because (PRAj |R)∗ = PRAj |R. The formula for Ã∗j has been obtained
throughout the proof.

We will now compute the rates and the gyrations of a vessel in which the compressions Ã∗1 and
Ã∗2 can be included. The next Lemma motivates the definition of the window operator Φ̃ and
shows that the rates of the vessel will coincide with the rates σj .

Lemma 4.27. Define the operator Φ̃ : R→M = M− ⊕M+ by

Φ̃ =

[
−τ−∗− P

M̂−
|R

PM+ |R

]
. (4.55)

Then
1

i
(Ã∗j − Ãj) = Φ̃∗σjΦ̃, j = 1, 2,

where σj are given by (4.48).

Proof. Using the formulas for Ãj and Ã∗j given in Lemma 4.25 and Proposition 4.26, we see that

Ã∗j − Ãj = PR(−β∗j τ−∗− P
M̂−

+ τ−1
− βjPM+)|R. (4.56)

Now we compute

Φ̃∗σjΦ̃ =
[
−PRτ−1

− PR
] [ 0 iβj
−iβ∗j 0

][
−τ−∗− P

M̂−
|R

PM+ |R.

]
= PR(iβ∗j τ

−∗
− P

M̂−
− iτ−1

− βjPM+)|R =
1

i
(Ã∗j − Ãj).
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The next two lemmas are calculations needed to compute the gyrations of the vessel.

Lemma 4.28. The following equality holds for j = 1, 2:

P
M̂−

(Ajτ
∗
− − β∗j )|M− = (τ∗−PM−Aj − PM̂−AjPĤ0,−

)|M−.

Proof. Since M− ⊂ Ĥ−, we have

P
M̂−

Aj |M− = P
M̂−

Aj(PM̂− + P
Ĥ0,−

)|M− = (P
M̂−

Ajτ
∗
− + P

M̂−
AjPĤ0,−

)|M−.

Since AjM− ⊂ H− +M+, using the relation obtained by taking adjoints in (4.50), we get

P
M̂−

Aj |M− = P
M̂−

(PM− + PM+)Aj |M− = (τ∗−PM−Aj + P
M̂−

β∗j )|M−.

Hence, we see that

(P
M̂−

Ajτ
∗
− + P

M̂−
AjPĤ0,−

)|M− = (τ∗−PM−Aj + P
M̂−

β∗j )|M−.

The Lemma now follows by rearranging terms.

Lemma 4.29. The following two relations hold for j = 1, 2:

PM+Ã
∗
j = PM+AjΦ̃ + PM+AjPH0,+ |R. (4.57)

−τ−∗− P
M̂−

Ã∗j = PM−AjΦ̃− τ−∗− P
M̂−

AjPĤ0,−
(I − τ−∗− P

M̂−
)|R. (4.58)

Proof. First we prove (4.57). Take a fixed r ∈ R and put m− = τ−∗− P
M̂−

r ∈ M−. We note that

r −m− ∈ Ĥ0,−, because r −m− ∈ Ĥ− (recall that R ⊂ Ĥ− and M− ⊂ H− ⊂ Ĥ−), and

P
M̂−

(r −m−) = P
M̂−

r − τ∗−m− = 0.

It follows that A(r −m−) ∈ Ĥ−. By the definition of the compression, we see that

Ã∗jr +H− = A(r −m−) +H−,

because Ã∗j is the compression of Aj to the quotient Ĥ−/H−.
Since PM+ |H− = 0, the operator PM+ is well defined in the quotient Ĥ−/H−. This implies

that
PM+Ã

∗
jr = PM+A(r −m−).

Therefore, we see that
PM+Ã

∗
j = PM+Aj |R− PM+Ajτ

−∗
− P

M̂−
|R,

because r ∈ R was arbitrary. Writing

PM+Aj |R = PM+AjPM+ |R+ PM+AjPH0,+ |R,

which is true because R ⊂ H+, and using the definition of Φ̃ given in (4.55), we get (4.57).
To prove (4.58), we first apply hat-symmetry in (4.57) to obtain

P
M̂−

Ãj = (P
M̂−

AjPM̂− − PM̂−Ajτ
−1
+ PM+ + P

M̂−
AjPĤ0,−

)|R.
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4. Separating structures

(Note that hat-symmetry interchanges the operators Ãj and Ã∗j ). Since

P
M̂−

Ajτ
−1
+ = β̂jτ

−1
+ = τ−1

− βj

by Lemma 4.24, we get

P
M̂−

Ãj = (P
M̂−

AjPM̂− − τ
−1
− βjPM+ + P

M̂−
AjPĤ0,−

)|R.. (4.59)

Now we will use (4.56) to compute P
M̂−

(Ã∗j − Ã). We have

P
M̂−

PR|M+ = P
M̂−

P
Ĥ−
|M+ = P

M̂−
|M+,

because R = Ĥ− ∩H+ and M+ ⊂ H+. Similarly,

P
M̂−

PR|M̂− = P
M̂−

PH+ |M̂− = P
M̂−

(I − PM−)|M̂− = (I − τ∗−τ−)|M̂−.

Here, the second equality is true by the relation obtained by taking adjoints in (4.50). Using these
last two identities in (4.56), we see that

P
M̂−

(Ã∗j − Ãj) = (−P
M̂−

β∗j τ
−∗
− P

M̂−
+ (I − τ∗−τ−)τ−1

− βjPM+)|R

= (−P
M̂−

β∗j τ
−∗
− P

M̂−
+ τ−1
− βjPM+ − τ∗−βjPM+)|R.

(4.60)

By (4.59) and (4.60),

P
M̂−

Ã∗j = P
M̂−

Ãj + P
M̂−

(Ã∗j − Ãj)

= (P
M̂−

AjPM̂− + P
M̂−

AjPĤ0,−
− P

M̂−
β∗j τ

−∗
− P

M̂−
− τ∗−βjPM+)|R

= (P
M̂−

(Ajτ
∗
− − β∗)τ−∗− P

M̂−
− τ∗−βjPM+ + P

M̂−
AjPĤ0,−

)|R.

In this last equality, we have just rearranged terms. Using Lemma 4.28, we see that the last
expression equals

(τ∗−PM−Ajτ
−∗
− P

M̂−
− P

M̂−
AP

Ĥ0,−
τ−∗− P

M̂−
− τ∗−βjPM+ + P

M̂−
AjPĤ0,−

)|R.

Multiplying by −τ−∗− on the left and using (4.55), we get (4.58).

The next Lemma shows that (3.24) is satisfied for Ã∗1 and Ã∗2 in place of A1 and A2, and with
γout = γout12 = γ.

Lemma 4.30. The compressions Ã∗1 and Ã∗2 satisfy the three term relationship

σ2Φ̃Ã∗1 − σ1Φ̃Ã∗2 + γΦ̃ = 0,

where σ1, σ2, γ are the matrices that appear in the three term relationship (4.1) for the pool Б
associated with the separating structure ω according to Theorem 4.9.

Proof. Multiplying the three term relationship (4.1) for Б by PM− on the left and Φ̃ on the right,
using (4.48) and ΦΦ̃ = Φ̃ (which is true because Φ = PM ), we get

iβ2PM+A1Φ̃− iβ1PM+A2Φ̃ + PM−γΦ̃ = 0.
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4. Separating structures

Using (4.57), we have

iβ2PM+Ã
∗
1 − iβ1PM+Ã

∗
2 + PM−γΦ̃− iβ2PM+A1PH0,+ |R+ iβ1PM+A2PH0,+ |R = 0.

Now we will show that since A1 and A2 commute, the last two terms in the left hand side of
the preceding equality cancel. Since (4.36) holds, we can write A1 and A2 as tridiagonal matrices
according to the decomposition K = H0,−⊕M−⊕M+⊕H0,+, in a way similar to (4.19). Indeed,

Aj =


∗ ∗ 0 0
∗ ∗ βj 0
0 ∗ ∗ PM+AjPH0,+

0 0 ∗ ∗

 , j = 1, 2.

Multiplying the second row ofA1 by the fourth column ofA2, we obtain the operator β1PM+A2PH0,+ .
Symetrically, multiplying the second row of A2 by the fourth row of A1, we obtain β2PM+A1PH0,+ .
Since A1A2 = A2A1, we must have

β1PM+A2PH0,+ = β2PM+A1PH0,+ . (4.61)

As we have already remarked, this implies that

iβ2PM+Ã
∗
1 − iβ1PM+Ã

∗
2 + PM−γΦ̃ = 0.

Using (4.48) again and (4.55), we get

PM−(σ2Φ̃Ã∗1 − σ1Φ̃Ã∗2 + γΦ̃) = 0. (4.62)

Now we multiply (4.1) by PM+ on the left and Φ̃ on the right. We get

−iβ∗2PM−A1Φ̃ + iβ∗1PM−A2Φ̃ + PM+γΦ̃ = 0.

Using (4.58), this rewrites as

iβ∗2PM−τ
−∗
− P

M̂−
Ã∗1 − iβ∗1τ−∗− P

M̂−
Ã∗2 + PM+γΦ̃

− iβ∗2τ−∗− P
M̂−

A1PĤ0,−
(I − τ−∗− P

M̂−
)|R

+ iβ∗1τ
−∗
− P

M̂−
A1PĤ0,−

(I − τ−∗− P
M̂−

)|R = 0.

Now we will see that the last two terms in the left hand side of this equality cancel. Using
Lemma 4.24, we have

β∗2τ
−∗
− P

M̂−
A1PĤ0,−

− β∗1τ−∗− P
M̂−

A1PĤ0,−

= τ−∗+

(
β̂∗2PM̂−A1PĤ0,−

− β̂∗1PM̂−A2PĤ0,−

)
.

Using hat-symmetry in (4.61), we see that the expression in brackets is zero.
Therefore, we have

iβ∗2PM−τ
−∗
− P

M̂−
Ã∗1 − iβ∗1τ−∗− P

M̂−
Ã∗2 + PM+γΦ̃ = 0.

Using (4.48) and (4.55), this yields

PM+(σ2Φ̃Ã∗1 − σ1Φ̃Ã∗2 + γΦ̃) = 0. (4.63)

The Lemma now follows from (4.62) and (4.63).
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Theorem 4.31. Suppose that A1, A2 are two selfadjoint operators on K which are included in
two separating structures ω and ω̂ such that ω̂ ≺ ω, as in (4.46). Assume that (Iβ) and (Iτ) hold
(see pages 75 and 77). Define R from (4.49) and let Ãj be the compression of Aj to R, considered
as the quotient H+/Ĥ+, for j = 1, 2. Assume that the compression operators Ãj commute. Let
σ1, σ2, γ be the matrices that appear in the three term relationship (4.1) for the pool Б associated
with ω according to Theorem 4.9, and let σ̂1, σ̂2, γ̂ be the corresponding matrices for ω̂. Define Φ̃

from (4.55) and let ̂̃Φ be the operator obtained from Φ̃ by applying hat-symmetry, i.e.,

̂̃
Φ =

[
P
M̂−
|R

−τ−1
+ PM+ |R

]
: R→ M̂ = M̂− ⊕ M̂+.

Then, the following tuples are commutative vessels:

(a) (Ã∗1, Ã
∗
2;R, Φ̃,M ;σj , γ

in = γ − i(σ1Φ̃∗Φ̃σ2 − σ2Φ̃∗Φ̃σ1), γout = γ).

(b) (Ã1, Ã2;R,−Φ̃,M ;−σj , γin = −γ, γout = −γ + i(σ1Φ̃∗Φ̃σ2 − σ2Φ̃∗Φ̃σ1)).

(c) (Ã1, Ã2;R,
̂̃
Φ, M̂ ; σ̂j , γ

in = γ̂ − i(σ̂1
̂̃
Φ
∗ ̂̃
Φσ2 − σ2

̂̃
Φ
∗ ̂̃
Φσ1), γout = γ̂).

(d) (Ã∗1, Ã
∗
2;R,−̂̃Φ, M̂ ;−σ̂j , γin = −γ̂, γout = −γ̂ + i(σ̂1

̂̃
Φ
∗ ̂̃
Φσ2 − σ2

̂̃
Φ
∗ ̂̃
Φσ1), ).

Proof. The fact that (a) is a vessel is just a consequence of the preceding Lemma 4.27 and
Lemma 4.30. Then (b) is just the adjoint vessel of (a). The vessel (c) is obtained from (a) by
hat-symmetry, and (d) is the adjoint vessel of (c).

It is worthy to mention that Lemma 4.21 gives a sufficient condition for the compressions Ã1

and Ã2 to commute, which is required in this Theorem.
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A. Functional calculus

A functional calculus for Hilbert space operators is a homomorphism Ψ : A → B(H), where A is
a certain algebra of complex functions defined on some set and B(H) denotes the set of bounded
operators in a Hilbert space. If the algebra A has a unit, we require that Ψ maps the unit to the
identity operator I, which is the unit of B(H). The easiest functional calculus we can think of is
obtained by fixing an operator T ∈ B(H), putting A = C[z], the algebra of polynomials in z and
defining

Ψ(anz
n + · · ·+ a1z + a0) = anT

n + · · ·+ a1T + a0I.

We can call this calculus the polynomial calculus for the operator T .
Usually, one wishes to extend the polynomial calculus to a larger algebra of functions. Therefore,
A will be an algebra containing the polynomials. In many cases, A will have some topology
defined on it, and we will require the map Ψ to have some continuity properties. For instance, it
is not difficult to check that the polynomial calculus defined above is continuous when one puts
the topology of uniform convergence on compact subsets of C on C[z] and the operator norm
topology on B(H).
Whenever C[z] ⊂ A, we can put T = Ψ(z) and say that the calculus is a calculus for the

operator T . Then, it is usual to write f(T ) instead of Ψ(f) when we know the functional calculus
that we are using.
Another simple functional calculus for an operator T ∈ B(H) is the Rat(σ(T )) functional

calculus. Here we put A = Rat(σ(T )), where Rat(K) denotes the algebra of rational functions
with poles off a compact set K. Recall that σ(T ) is the spectrum of T , the set of all λ ∈ C
such that T − λI does not have a bounded inverse in B(H). The Rat(σ(T )) functional calculus
is defined by

Ψ(p(z)/q(z)) = p(T )q(T )−1,

where p, q ∈ C[z], q does not vanish on σ(T ), and p(T ), q(T ) are defined using the polynomial
calculus for T .
Here, one should check that the operator q(T ) is invertible. This bring us to another interesting

property that some functional calculi have: the spectral mapping property. If the algebra A of a
functional calculus for T is an algebra of functions defined on σ(T ), we say that the calculus has
the spectral mapping property if

σ(f(T )) = f(σ(T )).

(Here the set on the right hand side is just notation for {f(λ) : λ ∈ σ(T )). It is easy to see that to
check that the operator q(T ) above is invertible, it suffices to check that the polynomial calculus
has the spectral mapping property.
Below we will present two different and very useful types of functional calculi.

A.1. Riesz-Dunford functional calculus

The Riesz-Dunford funcional calculus is an extension of the two simple calculi defined above for
functions holomorphic on σ(T ). It can be constructed more in general for Banach algebras (see,
for instance, [Rud91, Section 10.21]), but here we will stick to the setting described above.
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A. Functional calculus

Fix an operator T ∈ B(H). We say that a function is holomorphic on σ(T ) if it is defined
and holomorphic on some (open) neighbourhood of σ(T ). The algebra A for the Riesz-Dunford
calculus is the algebra of all the functions holomorphic on σ(T ). Since by Runge’s theorem any
function holomorphic on σ(T ) can be approximated uniformly on compact sets by functions in
Rat(σ(T )), the Riesz-Dunford calculus could be defined by using the continuity properties of
the Rat(σ(T )) calculus for T and taking limits. However, it is much more powerful to use a
generalization of Cauchy’s integral formula.
Take a function f be holomorphic on σ(T ), and let Uf be some neighbourhood of σ(T ) on

which f is holomorphic and Γf a contour in Uf which “surrounds” σ(T ). By “surrounds” we mean
that

1

2πi

∫
Γf

dλ

λ− z
=

{
1, if z ∈ σ(T ),

0, if z /∈ Uf ,

so that Cauchy’s intregral formula holds in σ(T ) for functions holomorphic in Uf , using the
contour Γf (see [Rud87, Section 10.34] for a statement of the “global” Cauchy integral formula).
Then we define

f(T ) = Ψ(f) =
1

2πi

∫
Γf

f(λ)(λI − T )−1dλ.

The map Ψ defined above is indeed a homomorphism which extends the Rat(σ(T )) calculus. It
has the following continuity property: if {fn}∞n=1 and f are holomorphic on some neighbourhood
U of σ(K) and fn converges to f uniformly on compact subsets of U , then fn(T ) converges to f(T )
in the operator norm topology. Moreover, this functional calculus satisfies the spectral mapping
property. Also, it is clear from the definition that for any f ∈ A, the operator f(T ) commutes
with every operator S that commutes with T .
A construction which can be done using the Riesz-Dunford calculus is that of the Riesz pro-

jections. Let K be a subset of σ(T ) which is closed and open in the relative topology. We define
fK to be constantly 1 on a small neighbourhood of K and constantly 0 on another disjoint small
neighbourhood of σ(T ) \K. Then fK is holomorphic on σ(T ). The Riesz projection associated
to K is ΠKT = fK(T ). It is a parallel projection, i.e., (ΠKT )2 = ΠKT , because f2

K = fK .
Using the definition for the functional calculus, we see that ΠKT has the formula

ΠKT =
1

2πi

∫
ΓK

(λI − T )−1dλ,

where ΓK is a contour which “surrounds” K and “leaves σ(T ) \K outside”.
The subspace (ΠKT )H is invariant for T . If K1, . . . ,Kn is a partition of σ(T ) into subsets

which are closed and open in the relative topology, then we have

I = ΠK1T + . . .+ ΠKnT,

and
(ΠKjT )(ΠKkT ) = 0, j 6= k.

This implies that the space H decomposes in direct sum of subspaces invariant for T :

H = (ΠK1T )H u . . .u (ΠKnT )H.

In the case when H is finite-dimensional, the spectrum of T is a finite collection of points, which
are the eigenvalues of T , λ1, . . . , λn. Then, we can consider the partition of σ(T ) given by the
subsets Kj = {λj}, to obtain Riesz projections ΠλjT associated with each of the eigenvalues of
T . The subspaces (ΠλjT )H are then the generalized eigenspaces (also called root spaces) which
appear in the Jordan normal form of T .
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A.2. Spectral theorem and functional calculus for normal operators

The spectral theorem for normal operators can be seen as a consequence of the theory of com-
mutative C∗-algebras and the Gelfand transform (see [Rud91, Section 12.22]). One of the most
common forms of the spectral theorem consists in representing a normal operator T as an integral
against a projection valued measure.
Let M be a σ-algebra on a set X. A function E : M → B(H) is called an spectral measure if

it satisfies the following properties:

(a) E(∅) = 0 and E(X) = I.

(b) E(A) is an orthogonal projection for every A ∈M.

(c) E(A ∩B) = E(A)E(B) for every A,B ∈M.

(d) If A,B ∈M and A ∩B = ∅, then E(A ∪B) = E(A) + E(B).

(e) For every pair of vectors h, h′ ∈ H, the function defined by A 7→ 〈E(A)h, h′〉 is a complex
measure.

If E is a spectral measure on X and f : X → C is bounded and measurable, the integral

T =

∫
X
f(λ) dE(λ)

defines a bounded operator on H by

〈Th, h′〉 =

∫
X
f(λ) 〈dE(λ)h, h′〉, ∀h, h′ ∈ H.

The spectral theorem states that if T ∈ B(H) is a normal operator then there is a spectral
measure E on the Borel subsets of σ(T ) such that

T =

∫
σ(T )

λ dE(λ).

The spectral projections E(A) for A a Borel subset of σ(T ) commute with every operator S which
commutes with T . Also, the support of E is σ(T ), in the sense that E(U) 6= 0 for every nonempty
(relatively) open subset U of σ(T ).
This allows us to define a functional calculus for T . If f : σ(T )→ C is bounded Borel, we can

define
f(T ) =

∫
σ(T )

f(λ) dE(λ). (A.1)

This defines a functional calculus Ψ : A → B(H), where A is the algebra of bounded Borel
functions on σ(T ). This calculus extends the Riesz-Dunford functional calculus. Moreover, it
satisfies

‖f(T )‖ ≤ sup
z∈σ(T )

|f(z)|,

and f(T ) = f(T )∗. The operator f(T ) commutes with every S which commutes with T .
Let us recall that selfadjoint operators and unitary operators are particular kinds of normal

operators. Moreover, σ(T ) ⊂ R for a selfadjoint operator and σ(T ) ⊂ T for a unitary operator.
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A functional calculus for matrix-valued functions can also be defined (see Section 2.6 for the
notation). If f : σ(T ) → Ms is bounded Borel, then we can also define f(T ) using (A.1), where
the integral is defined componentwise: if f(λ) = [fjk(λ)]jk, then

f(T ) =

∫
σ(T )

f(λ) dE(λ) =

[∫
σ(T )

fjk(λ) dE(λ)

]
jk

This calculus extends the Ms[z] calculus defined on Section 2.6. The usual properties of the
scalar-valued functional calculus also hold for the matrix-valued calculus. In particular, we have
the inequality ‖f(T )‖ ≤ supz∈σ(T ) ‖f(z)‖.
A version of the spectral theorem for commuting normal operators also exists (see, for instance

[AM02, Appendix D]). Let T1, . . . , Tn ∈ B(H) be commuting normal operators. Note that in
this case, all the operators T1, . . . , Tn, T

∗
1 , . . . , T

∗
n commute by the Fuglede-Putnam-Rosenblum

theorem (see [Rud91, Theorem 12.16]). Then there is a compact set X ⊂ Cn and a spectral
measure on the Borel subsets of X such that

Tj =

∫
X
λj dE(λ1, . . . , λn), j = 1, . . . , n.

A functional calculus can be defined for bounded Borel functions on X by

f(T1, . . . , Tn) =

∫
X
f(λ1, . . . , λn) dE(λ1, . . . , λn).

This calculus extends the usual C[z1, . . . , zn] polynomial calculus and has analogous properties to
the calculus for a single operator. A calculus for matrix-valued functions can also be defined. If
T1, . . . , Tn are selfadjoint, then X ⊂ Rn, and if T1, . . . , Tn are unitary, then X ⊂ Tn.
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[Pri50] I. I. Privalov, Graničnye svŏıstva analitičeskih funkcĭı, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-
Leningrad, 1950 (Russian). 2d ed.] MR0047765 (13,926h)

[Pri56] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I.
Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25,
VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). MR0083565 (18,727f)

[Rud87] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR924157
(88k:00002)

[Rud91] , Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics,
McGraw-Hill Inc., New York, 1991. MR1157815 (92k:46001)

[SNFBK10] B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy, Harmonic analysis of operators on Hilbert space,
Revised and enlarged edition, Universitext, Springer, New York, 2010. MR2760647 (2012b:47001)

[SV05] A. Shapiro and V. Vinnikov, Rational transformations of systems of commuting nonselfadjoint oper-
ators (2005), available at http://arxiv.org/abs/math/0511075v1.

[Var74] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of
tensor products to operators theory, J. Functional Analysis 16 (1974), 83–100. MR0355642 (50
#8116)

[Vin98] V. Vinnikov, Commuting operators and function theory on a Riemann surface, Holomorphic spaces
(Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998,
pp. 445–476. MR1634421 (99e:47018)

[Yak98a] D. V. Yakubovich, Subnormal operators of finite type. I. Xia’s model and real algebraic curves
in C2, Rev. Mat. Iberoamericana 14 (1998), no. 1, 95–115, DOI 10.4171/RMI/236. MR1639287
(2000b:47060)

[Yak98b] , Subnormal operators of finite type. II. Structure theorems, Rev. Mat. Iberoamericana 14
(1998), no. 3, 623–681, DOI 10.4171/RMI/247. MR1681587 (2001d:47032)

88

http://arxiv.org/abs/math/0511075v1


Index

C∗-algebra, 28
Dξ, 54
Eξ, 53
H2(U ), 3
H∞(U ,Y ), 4
L2(U ), 3
M(L), 7
M+(L), 7
Mz, 4
Meit , 3
Nξ, 52
Qξ, 55
R, 75
S(ξ, z), 43
S(z), 40
V, V∗, 57, 58
Wξ, 53
H0,−, H0,+, H−, H+,M−,M+, 56
Φ, 38, 52
Б, 52
ω, 58
Σξ, 54
ΘT , 14
Xaff, X, X̂, . . ., 54
X̂−, X̂+, 67
Ξ, 52
αξ, 52
βj , β̂j , 74
γ, 52
γξ, 52
γin, γout, 49
γinkj , γ

out
kj , 44

ν, ν∗, 57, 58
σ, σk, 38, 41, 52
τ−, τ+, 75
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