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Previous results and main result

T a bounded operator on a Hilbert space H. σ(T ) contained in a smooth curve Γ
without self-intersections.

Stampfli (1965): If ‖(T − λ)−1‖ ≤ dist(λ, Γ)−1 in some neighbourhood of Γ, then T
is normal.

First proved by Nieminen (1962) for Γ = R and Donoghue (1963) for Γ = T.

Natural question: What about similarity to a normal operator?

There are operators T with σ(T ) ⊂ Γ and such that ‖(T − λ)−1‖ ≤ C dist(λ, Γ)−1

but T is not similar to a normal. Benamara-Nikolski (1999), Nikolski-Treil (2002).

Theorem A

If Ω is a C1+α domain, Γ = ∂Ω, σ(T ) ⊂ Γ, U a neighbourhood of Γ,

‖(T − λ)−1‖ ≤ dist(λ, Γ)−1, λ ∈ U \ Ω,

‖(T − λ)−1‖ ≤ C dist(λ, Γ)−1, λ ∈ Ω,

then T is similar to a normal.

The conditions of the theorem can be interchanged (constant 1 inside and constant C
outside).
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Some examples

If T is a contraction, then ‖(T − λ)−1‖ ≤ (|λ| − 1)−1 for |λ| > 1.

A contraction T is similar to a unitary if and only if ‖ΘT (z)−1‖ ≤ C for |z| < 1
(Sz.Nagy-Foias).

A contraction similar to a unitary satisfies the hypotheses of Theorem A. It can be
transplanted to other domains by a Riemann mapping.

ρ-contractions also serve as examples. T is a ρ-contraction if there is a unitary U
on a larger space K such that T n = ρPHUn|H for n ≥ 1.

If T is a ρ-contraction with ρ ≥ 2, then ‖(T − λ)−1‖ ≤ (|λ| − 1)−1 for
1 < |λ| < (ρ− 1)/(ρ− 2).

A ρ-contraction similar to a unitary satisfies the hypotheses of Theorem A.

An example of a 2-contraction similar to a unitary which is not a contraction: The
bilateral weighted shift in `2(Z) with weights . . . , 1, 1, α, β, 1, 1, . . ., where α, β > 0,
max(α, β) > 1 and α2 + β2 < 2.
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Conditions for similarity to a unitary

Consider the following conditions:

Sim(T ), T is similar to a unitary.

PowBd(T ), T is power bounded (‖T n‖ ≤ C, n ≥ 0).

LMean2RG(T ), T satisfies∫
|λ|=r

‖(T − λ)−1x‖2 |dλ| ≤ C‖x‖2(r − 1)−1,

for every r > 1 and x ∈ H.

LRG(T ), T satisfies ‖(T − λ)−1‖ ≤ C(|λ| − 1)−1, for every |λ| > 1.

Then Sim(T )⇒ PowBd(T )⇒ LMean2RG(T )⇒ LRG(T ).

PowBd(T ) & PowBd(T−1)⇒ Sim(T ) (Sz. Nagy, 1947).

PowBd(T ) & LRG(T−1)⇒ Sim(T ) (van Casteren, 1980).

LMean2RG(T ) & LMean2RG(T ∗) & LRG(T−1)⇒ Sim(T ) (van Casteren, 1983).

LMean2RG(T ) & LMean2RG(T ∗−1)⇒ Sim(T ) (Naboko, 1984).
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LMean2RG for Jordan curves

Ω a Jordan domain, Γ = ∂Ω.
{γs}0<s<1 a collection of Jordan curves tends nicely to Γ if:

1 C−1s ≤ dist(x , Γ) ≤ Cs, x ∈ γs
2 length(γs ∩ B(x , r)) ≤ Cr

If γs ⊂ Ω (γs ⊂ C\Ω) for all s, we say that {γs} tends to Γ from the inside (outside).

We consider the condition∫
γs

‖(T − λ)−1x‖2 |dλ| ≤ C‖x‖2s−1,

where {γs}0<s<1 tends to Γ from the inside/outside. This condition does not depend on
the particular choice of {γs}.
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Generalization of van Casteren (1983)

van Casteren (for σ(T ) ⊂ T):
LMean2RG(T ) & LMean2RG(T ∗) & LRG(T−1)⇒ Sim(T ).

Theorem B

Assume that Ω is a C1+α Jordan domain, Γ = ∂Ω, and σ(T ) ⊂ Γ. If

‖(T − λ)−1‖ ≤ C dist(λ, Γ)−1, λ ∈ Ω∫
γs

‖(T − λ)−1x‖2 |dλ| ≤ C‖x‖2s−1,∫
γs

‖(T ∗ − λ)−1x‖2 |dλ| ≤ C‖x‖2s−1,

for {γs}0<s<1 tending nicely to Γ from the outside, then T is similar to a normal.
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Generalization of Naboko (1984)

Naboko (for σ(T ) ⊂ T): LMean2RG(T ) & LMean2RG(T ∗−1)⇒ Sim(T ).

Theorem C

Assume that Ω is a C1+α Jordan domain, Γ = ∂Ω, and σ(T ) ⊂ Γ. If∫
γs

‖(T − λ)−1x‖2 |dλ| ≤ C‖x‖2s−1,

∫
γ̃s

‖(T ∗ − λ)−1x‖2 |dλ| ≤ C‖x‖2s−1,

for {γs}0<s<1 tending nicely to Γ from the outside and {γ̃s}0<s<1 tending nicely to Γ
from the inside, then T is similar to a normal.
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Pseudoanalytic extension and Dynkin’s calculus

Pseudoanalytic extension: If f ∈ C1+α(Γ), there is F ∈ C1(C) such that F |Γ = f and
|∂F (z)| ≤ C‖f‖C1+α dist(z, Γ)α.

If ‖(T − λ)−1‖ ≤ C dist(λ, Γ)−1, Dynkin defines a C1+α(Γ)-calculus for T :

f (T ) =
1

2πi

∫
∂D

F (λ)(λ− T )−1 dλ− 1
π

∫∫
D
∂F (λ)(λ− T )−1 dA(λ),

where F is a pseudoanalytic extension of f and D ⊃ Γ.

This calculus defines a map Φ : C1+α(Γ)→ B(H) which is linear, bounded,
multiplicative, and such that Φ(z) = T . It also satisfies the spectral mapping property:
σ(f (T )) = f (σ(T )).
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Generalization of van Casteren (1980)

van Casteren (for σ(T ) ⊂ T): PowBd(T ) & LRG(T−1)⇒ Sim(T ).

Theorem D (Dritschel-E.-Yakubovich arXiv:1510.08350)

Assume that Ω is a C1+α Jordan domain, Γ = ∂Ω, σ(T ) ⊂ Γ, and η : Γ→ T a
C1+α-diffeomorphism. Assume that ‖(T − λ)−1‖ ≤ C dist(λ, Γ)−1. Then η(T ) is defined
by Dynkin’s calculus. If η(T ) is power bounded, then T is similar to a normal.
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Passing between Γ and T

We take η : Γ→ T a C1+α-diffeomorphism and do a “good” pseudonalytic extension to
a neighbourhood of Γ (we also denote it by η).

Key estimate:

C−1‖(T − λ)−1x‖ ≤ ‖(η(T )− η(λ))−1x‖ ≤ C‖(T − λ)−1x‖.

Daniel Estévez (UAM) Similarity to a normal. Resolvent estimates Operator Theory 26 14 / 15



Passing between Γ and T

We take η : Γ→ T a C1+α-diffeomorphism and do a “good” pseudonalytic extension to
a neighbourhood of Γ (we also denote it by η).

Key estimate:

C−1‖(T − λ)−1x‖ ≤ ‖(η(T )− η(λ))−1x‖ ≤ C‖(T − λ)−1x‖.

Daniel Estévez (UAM) Similarity to a normal. Resolvent estimates Operator Theory 26 14 / 15



A generalization of a Theorem of B.Delyon-F.Delyon and
Putinar-Sandberg

If Ω is a bounded convex domain and the of the numerical range of T is contained in Ω,
then Ω is a complete K -spectral set for T , for some K ≥ 1.

Recall that the conclusion means that

‖f (T )‖ ≤ K‖f‖L∞(Ω),

for every matrix-valued rational function f with poles off Ω.

Theorem E

If Ω is C1+α Jordan domain, Γ = ∂Ω, σ(T ) ⊂ Ω, and R > 0 is such that for each λ ∈ Γ
there is µ(λ) ∈ C \ Ω such that dist(µ(λ), Γ) = |λ− µ(λ)| = R and
‖(T − µ(λ))−1‖ ≤ R−1. Then Ω is a complete K -spectral set for T , for some K ≥ 1.
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