Generation of algebras and separation of singularities

Daniel Estévez

Universidad Autónoma de Madrid
Joint work with Michael Dritschel (Newcastle Univ.) and Dmitry Yakubovich (UAM)

13th October 2015

Summary

(1) Motivation: generation of algebras and algebras in analytic curves
(2) Separation of singularities
(3) Main results about generation of algebras
(4) Main results about algebras in analytic curves
(5) Consecuences for certain subalgebras of $H^{\infty}(\Omega)$

Summary

(1) Motivation: generation of algebras and algebras in analytic curves

(2) Separation of singularities

(3) Main results about generation of algebras

4 Main results about algebras in analytic curves
(5) Consecuences for certain subalgebras of $H^{\infty}(\Omega)$

Generation of algebras in planar domains

- $\Omega \subset \mathbb{C}$ a domain
- \mathfrak{A} a uniform algebra of analytic functions in $\Omega, \mathfrak{A}=H^{\infty}(\Omega)$ or $\mathfrak{A}=A(\bar{\Omega})=\mathcal{H}(\Omega) \cap C(\bar{\Omega})$
- $\Phi \subset \mathfrak{A}$ (tipically finite $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$)

Denote by $\overline{\mathfrak{A}_{\phi}}$ the smallest closed (or weak* closed) subalgebra of \mathfrak{A} containing Φ.

Natural questions:

- When $\overline{\mathscr{A}_{\varnothing}}=\mathfrak{A}$?
- When $\overline{\mathfrak{A}}_{\Phi}$ has finite codimension in \mathfrak{X} ?

Several papers study algebras of type $A(\bar{\Omega})$ and give sufficient conditions for $\overline{\mathfrak{A}_{\Phi}}=\mathfrak{A}$ (Wermer, Bishop, Blumenthal, Sibony-Wermer).
However, even in the simple case $\mathfrak{A}=A(\bar{D}), \phi=\left\{\varphi_{1}, \varphi_{2}\right\}$, a set of necessary and sufficient conditions for $\overline{\mathfrak{A}_{\phi}}=\mathfrak{A}$ is not known.

Generation of algebras in planar domains

- $\Omega \subset \mathbb{C}$ a domain
- \mathfrak{A} a uniform algebra of analytic functions in $\Omega, \mathfrak{A}=H^{\infty}(\Omega)$ or $\mathfrak{A}=A(\bar{\Omega})=\mathcal{H}(\Omega) \cap C(\bar{\Omega})$
- $\Phi \subset \mathfrak{A}$ (tipically finite $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$)

Denote by $\overline{\mathfrak{A}_{\Phi}}$ the smallest closed (or weak* closed) subalgebra of \mathfrak{A} containing Φ.
Natural questions:

- When $\overline{\mathfrak{A}_{\Phi}}=\mathfrak{A}$?
- When \mathfrak{A}_{ϕ} has finite codimension in \mathfrak{X} ?

Several papers study algebras of type $A(\bar{\Omega})$ and give sufficient conditions for $\overline{\mathfrak{A}_{\Phi}}=\mathfrak{A}$ (Wermer, Bishop, Blumenthal, Sibony-Wermer).
However, even in the simple case $\mathbb{R}=A(\bar{D}), \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$, a set of necessary and sufficient conditions for $\overline{\mathfrak{A}_{\phi}}=\mathfrak{A}$ is not known.

Generation of algebras in planar domains

- $\Omega \subset \mathbb{C}$ a domain
- \mathfrak{A} a uniform algebra of analytic functions in $\Omega, \mathfrak{A}=H^{\infty}(\Omega)$ or $\mathfrak{A}=A(\bar{\Omega})=\mathcal{H}(\Omega) \cap C(\bar{\Omega})$
- $\Phi \subset \mathfrak{A}$ (tipically finite $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$)

Denote by $\overline{\mathfrak{A}_{\Phi}}$ the smallest closed (or weak* closed) subalgebra of \mathfrak{A} containing Φ.
Natural questions:

- When $\overline{\mathfrak{A}_{\phi}}=\mathfrak{A}$?
- When $\overline{\mathfrak{A}_{\Phi}}$ has finite codimension in \mathfrak{A} ?

Several papers study algebras of type $A(\bar{\Omega})$ and give sufficient conditions for $\overline{\mathfrak{A}_{\phi}}=\mathfrak{A}$ (Wermer, Bishop, Blumenthal, Sibony-Wermer).
However, even in the simple case $\mathbb{R}=A(\bar{D}), \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$, a set of necessary and sufficient conditions for $\overline{\mathcal{A}_{\phi}}=\mathfrak{A}$ is not known.

Generation of algebras in planar domains

- $\Omega \subset \mathbb{C}$ a domain
- \mathfrak{A} a uniform algebra of analytic functions in $\Omega, \mathfrak{A}=H^{\infty}(\Omega)$ or $\mathfrak{A}=A(\bar{\Omega})=\mathcal{H}(\Omega) \cap C(\bar{\Omega})$
- $\Phi \subset \mathfrak{A}$ (tipically finite $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$)

Denote by $\overline{\mathfrak{A}_{\Phi}}$ the smallest closed (or weak* closed) subalgebra of \mathfrak{A} containing Φ.
Natural questions:

- When $\overline{\mathfrak{A}_{\Phi}}=\mathfrak{A}$?
- When $\overline{\mathfrak{A}_{\Phi}}$ has finite codimension in \mathfrak{A} ?

Several papers study algebras of type $A(\bar{\Omega})$ and give sufficient conditions for $\overline{\mathfrak{A}_{\Phi}}=\mathfrak{A}$ (Wermer, Bishop, Blumenthal, Sibony-Wermer). However, even in the simple case $\mathfrak{A}=A(\overline{\mathbb{D}}), \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$, a set of necessary and sufficient conditions for $\overline{\mathfrak{A}_{\Phi}}=\mathfrak{A}$ is not known.

A different kind of subalgebra

Note that every $f \in \overline{\mathfrak{A}_{\Phi}}$ is a limit of polynomials in $\varphi_{1}, \ldots, \varphi_{n}$.
Assume that $\varphi_{k}: \Omega \rightarrow \overline{\mathbb{D}}$. We can define:

- \mathcal{A}_{Φ} the smallest subalgebra of $A(\bar{\Omega})$ containing all functions $g \circ \varphi_{k}, g \in A(\overline{\mathbb{D}})$
- \mathcal{H}_{Φ} the smallest subalgebra of $H^{\infty}(\Omega)$ containing all functions $g \circ \varphi_{k}, g \in H^{\infty}(\mathbb{D})$ These are not necessarily closed.
$f \in \mathcal{A}_{\Phi}$ is of the form

$$
f(z)=\sum_{k=1}^{N} g_{1, k}\left(\varphi_{1}(z)\right) g_{2, k}\left(\varphi_{2}(z)\right) \cdots g_{n, k}\left(\varphi_{n}(z)\right), \quad g_{j, k} \in A(\overline{\mathbb{D}}) .
$$

Remark:

- If $\mathfrak{A}=A(\bar{\Omega})$, then $\mathcal{A}_{\phi} \subset \overline{\mathcal{A}}_{\phi}$
- If $\mathfrak{A}=H^{\infty}(\bar{\Omega})$, then $\mathcal{H}_{\phi} \subset \overline{\mathcal{H}_{\phi}}$

These algebras have applications to Operator Theory and to the study of uniform algebras in analytic curves.

A different kind of subalgebra

Note that every $f \in \overline{\mathfrak{A}_{\Phi}}$ is a limit of polynomials in $\varphi_{1}, \ldots, \varphi_{n}$.
Assume that $\varphi_{k}: \Omega \rightarrow \overline{\mathbb{D}}$. We can define:

- \mathcal{A}_{Φ} the smallest subalgebra of $A(\bar{\Omega})$ containing all functions $g \circ \varphi_{k}, g \in A(\overline{\mathbb{D}})$
- \mathcal{H}_{Φ} the smallest subalgebra of $H^{\infty}(\Omega)$ containing all functions $g \circ \varphi_{k}, g \in H^{\infty}(\mathbb{D})$ These are not necessarily closed.
$f \in \mathcal{A}_{\Phi}$ is of the form

$$
f(z)=\sum_{k=1}^{N} g_{1, k}\left(\varphi_{1}(z)\right) g_{2, k}\left(\varphi_{2}(z)\right) \cdots g_{n, k}\left(\varphi_{n}(z)\right), \quad g_{j, k} \in A(\overline{\mathbb{D}}) .
$$

Remark:

- If $\mathfrak{A}=A(\bar{\Omega})$, then $\mathcal{A}_{\Phi} \subset \overline{\mathfrak{A}_{\Phi}}$
- If $\mathfrak{A}=H^{\infty}(\bar{\Omega})$, then $\mathcal{H}_{\Phi} \subset \overline{\mathfrak{A}_{\Phi}}$

A different kind of subalgebra

Note that every $f \in \overline{\mathfrak{A}_{\Phi}}$ is a limit of polynomials in $\varphi_{1}, \ldots, \varphi_{n}$.
Assume that $\varphi_{k}: \Omega \rightarrow \overline{\mathbb{D}}$. We can define:

- \mathcal{A}_{Φ} the smallest subalgebra of $A(\bar{\Omega})$ containing all functions $g \circ \varphi_{k}, g \in A(\overline{\mathbb{D}})$
- \mathcal{H}_{Φ} the smallest subalgebra of $H^{\infty}(\Omega)$ containing all functions $g \circ \varphi_{k}, g \in H^{\infty}(\mathbb{D})$

These are not necessarily closed.
$f \in \mathcal{A}_{\Phi}$ is of the form

$$
f(z)=\sum_{k=1}^{N} g_{1, k}\left(\varphi_{1}(z)\right) g_{2, k}\left(\varphi_{2}(z)\right) \cdots g_{n, k}\left(\varphi_{n}(z)\right), \quad g_{j, k} \in A(\overline{\mathbb{D}})
$$

Remark:

- If $\mathfrak{A}=A(\bar{\Omega})$, then $\mathcal{A}_{\Phi} \subset \overline{\mathfrak{A}_{\Phi}}$
- If $\mathfrak{A}=H^{\infty}(\bar{\Omega})$, then $\mathcal{H}_{\Phi} \subset \overline{\mathfrak{A}_{\Phi}}$

These algebras have applications to Operator Theory and to the study of uniform algebras in analytic curves.

Algebras in analytic curves

- $\mathcal{V} \subset \mathbb{D}^{n}$ an analytic curve inside the polydisc
- Algebras $H^{\infty}(\mathcal{V})$ and $A(\overline{\mathcal{V}})$

Natural question: describe this algebras.

```
An example:
    - \Omega\subset\mathbb{C}\mathrm{ a domain}
    - }\Phi=(\mp@subsup{\varphi}{1}{},\ldots,\mp@subsup{\varphi}{n}{}):\overline{\Omega}->\mp@subsup{\overline{\mathbb{D}}}{}{n
    - Put \mathcal{V}=\Phi(\Omega)
The pullback 啨}{*}{=}f\circ\Phi\mathrm{ .}
    - }\mp@subsup{\Phi}{}{*}A(\overline{\mathcal{V}})\mathrm{ is a subalgebra of }A(\overline{\Omega}
    - क* H
Question: describe these subalgebras.
One application: extension results. Prove that every \(f \in H^{\infty}(\mathcal{V})\) can be extended to an \(F\) in some algebra of functions in \(\mathbb{D}^{n}\).
```


Algebras in analytic curves

- $\mathcal{V} \subset \mathbb{D}^{n}$ an analytic curve inside the polydisc
- Algebras $H^{\infty}(\mathcal{V})$ and $A(\overline{\mathcal{V}})$

Natural question: describe this algebras.
An example:

- $\Omega \subset \mathbb{C}$ a domain
- $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$
- Put $\mathcal{V}=\Phi(\Omega)$

The pulback $\phi^{*} f=f \circ \phi$.

- $\Phi^{*} A(\overline{\mathcal{V}})$ is a subalgebra of $A(\bar{\Omega})$
- $\Phi^{*} H^{\infty}(\overline{\mathcal{V}})$ is a subalgebra of $H^{\infty}(\Omega$

Question: describe these subalgebras.
One application: extension results. Prove that every $f \in H^{\infty}(\mathcal{V})$ can be extended to an F in some algebra of functions in \mathbb{D}^{n}.

Algebras in analytic curves

- $\mathcal{V} \subset \mathbb{D}^{n}$ an analytic curve inside the polydisc
- Algebras $H^{\infty}(\mathcal{V})$ and $A(\overline{\mathcal{V}})$

Natural question: describe this algebras.
An example:

- $\Omega \subset \mathbb{C}$ a domain
- $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$
- Put $\mathcal{V}=\Phi(\Omega)$

The pullback $\Phi^{*} f=f \circ \Phi$.

- $\Phi^{*} A(\overline{\mathcal{V}})$ is a subalgebra of $A(\bar{\Omega})$
- $\Phi^{*} H^{\infty}(\overline{\mathcal{V}})$ is a subalgebra of $H^{\infty}(\Omega)$

Question: describe these subalgebras.
One application: extension results. Prove that every $f \in H^{\infty}(\mathcal{V})$ can be extended to an F in some algebra of functions in \mathbb{D}^{n}.

Algebras in analytic curves

- $\mathcal{V} \subset \mathbb{D}^{n}$ an analytic curve inside the polydisc
- Algebras $H^{\infty}(\mathcal{V})$ and $A(\overline{\mathcal{V}})$

Natural question: describe this algebras.
An example:

- $\Omega \subset \mathbb{C}$ a domain
- $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$
- Put $\mathcal{V}=\Phi(\Omega)$

The pullback $\Phi^{*} f=f \circ \Phi$.

- $\Phi^{*} A(\overline{\mathcal{V}})$ is a subalgebra of $A(\bar{\Omega})$
- $\Phi^{*} H^{\infty}(\overline{\mathcal{V}})$ is a subalgebra of $H^{\infty}(\Omega)$

Question: describe these subalgebras.
One application: extension results. Prove that every $f \in H^{\infty}(\mathcal{V})$ can be extended to an F in some algebra of functions in \mathbb{D}^{n}.

Summary

(4) Motivation: generation of algebras and algebras in analytic curves
(2) Separation of singularities

3 Main results about generation of algebras

4 Main results about algebras in analytic curves
(5) Consecuences for certain subalgebras of $H^{\infty}(\Omega)$

A simple example

- Ω_{1}, Ω_{2} two Jordan domains
- $\Omega=\Omega_{1} \cap \Omega_{2}$
- $\varphi_{k}: \Omega_{k} \rightarrow \mathbb{D}, k=1,2$, Riemann mappings

We want to write $f \in H^{\infty}(\Omega)$ as

$$
f(z)=g_{1}\left(\varphi_{1}(z)\right)+g_{2}\left(\varphi_{2}(z)\right), \quad g_{1}, g_{2} \in H^{\infty}(\mathbb{D}) .
$$

Since φ_{k} are univalent, putting $g_{k}=h_{k} \circ \varphi_{k}$, this is equivalent to

$$
f(z)=h_{1}(z)+h_{2}(z), \quad h_{k} \in H^{\infty}\left(\Omega_{k}\right) .
$$

A simple example

- Ω_{1}, Ω_{2} two Jordan domains
- $\Omega=\Omega_{1} \cap \Omega_{2}$
- $\varphi_{k}: \Omega_{k} \rightarrow \mathbb{D}, k=1,2$, Riemann mappings

We want to write $f \in H^{\infty}(\Omega)$ as

$$
f(z)=g_{1}\left(\varphi_{1}(z)\right)+g_{2}\left(\varphi_{2}(z)\right), \quad g_{1}, g_{2} \in H^{\infty}(\mathbb{D})
$$

Since φ_{k} are univalent, putting $g_{k}=h_{k} \circ \varphi_{k}$, this is equivalent to

$$
f(z)=h_{1}(z)+h_{2}(z), \quad h_{k} \in H^{\infty}\left(\Omega_{k}\right)
$$

This decomposition is a separation of singularities: In some sense, f is singular in $J_{1} \cup J_{2}$ and h_{k} is singular only in J_{k}.

Havin-Nersessian separation of singularities

First try:

$$
f(z)=\int_{J_{1} \cup J_{2}} \frac{f(w) d w}{w-z}=\int_{J_{1}} \frac{f(w) d w}{w-z}+\int_{J_{2}} \frac{f(w) d w}{w-z} .
$$

Put

$$
h_{k}(z)=\int_{J_{k}} \frac{f(w) d w}{w-z}
$$

Then $f=h_{1}+h_{2}$ and $h_{k} \in \mathcal{H}\left(\Omega_{k}\right)$.
However, $h_{k} \notin H^{\infty}\left(\Omega_{k}\right)$. h_{k} is not bounded near the endpoints of J_{k}, because it has singularities of logarithmic type there.
This simple procedure would have worked for $H^{p}, p<\infty$. But it does not work for H^{∞} We have to do something extra at the endpoints.
The idea of Havin-Nersessian: Put $\left\{z_{1}, z_{2}\right\}=J_{1} \cap J_{2}$. Put $\Gamma_{k}=J_{k} \cap \mathbb{D}_{\varepsilon}\left(z_{k}\right)$. Let R_{k} be a rigid rotation around z_{k} such that $R_{k}\left(\Gamma_{k}\right)$ is outside Ω. Put

Havin-Nersessian separation of singularities

First try:

$$
f(z)=\int_{J_{1} \cup J_{2}} \frac{f(w) d w}{w-z}=\int_{J_{1}} \frac{f(w) d w}{w-z}+\int_{J_{2}} \frac{f(w) d w}{w-z}
$$

Put

$$
h_{k}(z)=\int_{J_{k}} \frac{f(w) d w}{w-z}
$$

Then $f=h_{1}+h_{2}$ and $h_{k} \in \mathcal{H}\left(\Omega_{k}\right)$.
However, $h_{k} \notin H^{\infty}\left(\Omega_{k}\right)$. h_{k} is not bounded near the endpoints of J_{k}, because it has singularities of logarithmic type there.

We have to do something extra at the endpoints.
The idea of Havin-Nersessian: Put $\left\{z_{1}, z_{2}\right\}=J_{1} \cap J_{2}$. Put $\Gamma_{k}=J_{k} \cap \mathbb{D}_{\varepsilon}\left(z_{k}\right)$. Let R_{k} be a rigid rotation around z_{k} such that $R_{k}\left(\Gamma_{k}\right)$ is outside Ω. Put

Havin-Nersessian separation of singularities

First try:

$$
f(z)=\int_{J_{1} \cup J_{2}} \frac{f(w) d w}{w-z}=\int_{J_{1}} \frac{f(w) d w}{w-z}+\int_{J_{2}} \frac{f(w) d w}{w-z}
$$

Put

$$
h_{k}(z)=\int_{J_{k}} \frac{f(w) d w}{w-z}
$$

Then $f=h_{1}+h_{2}$ and $h_{k} \in \mathcal{H}\left(\Omega_{k}\right)$.
However, $h_{k} \notin H^{\infty}\left(\Omega_{k}\right)$. h_{k} is not bounded near the endpoints of J_{k}, because it has singularities of logarithmic type there.
This simple procedure would have worked for $H^{p}, p<\infty$. But it does not work for H^{∞}. We have to do something extra at the endpoints.
rigid rotation around z_{k} such that $R_{k}\left(\Gamma_{k}\right)$ is outside Ω. Put

Havin-Nersessian separation of singularities

First try:

$$
f(z)=\int_{J_{1} \cup J_{2}} \frac{f(w) d w}{w-z}=\int_{J_{1}} \frac{f(w) d w}{w-z}+\int_{J_{2}} \frac{f(w) d w}{w-z} .
$$

Put

$$
h_{k}(z)=\int_{J_{k}} \frac{f(w) d w}{w-z}
$$

Then $f=h_{1}+h_{2}$ and $h_{k} \in \mathcal{H}\left(\Omega_{k}\right)$.
However, $h_{k} \notin H^{\infty}\left(\Omega_{k}\right)$. h_{k} is not bounded near the endpoints of J_{k}, because it has singularities of logarithmic type there.
This simple procedure would have worked for $H^{p}, p<\infty$. But it does not work for H^{∞}. We have to do something extra at the endpoints.
The idea of Havin-Nersessian: Put $\left\{z_{1}, z_{2}\right\}=J_{1} \cap J_{2}$. Put $\Gamma_{k}=J_{k} \cap \mathbb{D}_{\varepsilon}\left(z_{k}\right)$. Let R_{k} be a rigid rotation around z_{k} such that $R_{k}\left(\Gamma_{k}\right)$ is outside Ω. Put

$$
\begin{aligned}
& h_{1}(z)=\int_{J_{1}} \frac{f(w) d w}{w-z}+\int_{R_{2}\left(\Gamma_{2}\right)} \frac{f\left(R_{2}^{-1}(w)\right) d w}{w-z}-\int_{R_{1}\left(\Gamma_{1}\right)} \frac{f\left(R_{1}^{-1}(w)\right) d w}{w-z} . \\
& h_{2}(z)=\int_{J_{2}} \frac{f(w) d w}{w-z}-\int_{R_{2}\left(\Gamma_{2}\right)} \frac{f\left(R_{2}^{-1}(w)\right) d w}{w-z}+\int_{R_{1}\left(\Gamma_{1}\right)} \frac{f\left(R_{1}^{-1}(w)\right) d w}{w-z} .
\end{aligned}
$$

Then $h_{k} \in H^{\infty}\left(\Omega_{k}\right)$.

Non-univalent functions

We have proved: In the simple example $\Omega=\Omega_{1} \cap \Omega_{2}, \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$ Riemann mappings, we have $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$. Even more is true: every $f \in H^{\infty}(\Omega)$ can be written as

$$
f(z)=g_{1}(\varphi(z))+g_{2}(\varphi(z))
$$

The same kind of arguments work when φ_{k} are univalent. But what about the case when φ_{k} are not univalent?

Two trivial remarks:

- If $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ "glues" two points $z_{1}, z_{2} \in \Omega$, i.e., $\phi\left(z_{1}\right)=\phi\left(z_{2}\right)$, then every $f \in \mathcal{H}_{\phi}$ glues these two points
- If Φ^{\prime} vanishes at some point $z_{0} \in \Omega$, then $f^{\prime}\left(z_{0}\right)=0$ for every $f \in \mathcal{H}_{\phi}$.

Even if ϕ is injective and Φ^{\prime} does not vanish, it is possible to show that in general one cannot hope to write every f as

$$
f(z)=g_{1}\left(\varphi_{1}(z)\right)+\ldots+g_{n}\left(\varphi_{n}(z)\right)
$$

Non-univalent functions

We have proved: In the simple example $\Omega=\Omega_{1} \cap \Omega_{2}, \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$ Riemann mappings, we have $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$. Even more is true: every $f \in H^{\infty}(\Omega)$ can be written as

$$
f(z)=g_{1}(\varphi(z))+g_{2}(\varphi(z))
$$

The same kind of arguments work when φ_{k} are univalent. But what about the case when φ_{k} are not univalent?

Two trivial remarks:
e If $\omega=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ "glues" two points $z_{1}, z_{2} \in \Omega$, i.e., $\phi\left(z_{1}\right)=\phi\left(z_{2}\right)$, then every
$f \in \mathcal{H}_{\phi}$ glues these two points

- If Φ^{\prime} vanishes at some point $z_{0} \in \Omega$, then $f^{\prime}\left(z_{0}\right)=0$ for every $f \in \mathcal{H}_{\phi}$.

Even if ϕ is injective and Φ^{\prime} does not vanish, it is possible to show that in general one cannot hope to write every f as

$$
f(z)=g_{1}\left(\varphi_{1}(z)\right)+\ldots+g_{n}\left(\varphi_{n}(z)\right) .
$$

Non-univalent functions

We have proved: In the simple example $\Omega=\Omega_{1} \cap \Omega_{2}, \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$ Riemann mappings, we have $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$. Even more is true: every $f \in H^{\infty}(\Omega)$ can be written as

$$
f(z)=g_{1}(\varphi(z))+g_{2}(\varphi(z))
$$

The same kind of arguments work when φ_{k} are univalent. But what about the case when φ_{k} are not univalent?

Two trivial remarks:

- If $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ "glues" two points $z_{1}, z_{2} \in \Omega$, i.e., $\Phi\left(z_{1}\right)=\Phi\left(z_{2}\right)$, then every $f \in \mathcal{H}_{\Phi}$ glues these two points
- If Φ^{\prime} vanishes at some point $z_{0} \in \Omega$, then $f^{\prime}\left(z_{0}\right)=0$ for every $f \in \mathcal{H}_{\phi}$.

Even if Φ is injective and Φ^{\prime} does not vanish, it is possible to show that in general one cannot hope to write every f as

$$
f(z)=g_{1}\left(\varphi_{1}(z)\right)+\ldots+g_{n}\left(\varphi_{n}(z)\right) .
$$

Non-univalent functions

We have proved: In the simple example $\Omega=\Omega_{1} \cap \Omega_{2}, \Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$ Riemann mappings, we have $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$. Even more is true: every $f \in H^{\infty}(\Omega)$ can be written as

$$
f(z)=g_{1}(\varphi(z))+g_{2}(\varphi(z)) .
$$

The same kind of arguments work when φ_{k} are univalent. But what about the case when φ_{k} are not univalent?

Two trivial remarks:

- If $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ "glues" two points $z_{1}, z_{2} \in \Omega$, i.e., $\Phi\left(z_{1}\right)=\Phi\left(z_{2}\right)$, then every $f \in \mathcal{H}_{\Phi}$ glues these two points
- If Φ^{\prime} vanishes at some point $z_{0} \in \Omega$, then $f^{\prime}\left(z_{0}\right)=0$ for every $f \in \mathcal{H}_{\Phi}$.

Even if Φ is injective and Φ^{\prime} does not vanish, it is possible to show that in general one cannot hope to write every f as

$$
f(z)=g_{1}\left(\varphi_{1}(z)\right)+\ldots+g_{n}\left(\varphi_{n}(z)\right) .
$$

Summary

(4) Motivation: generation of algebras and algebras in analytic curves
(2) Separation of singularities
(3) Main results about generation of algebras
4. Main results about algebras in analytic curves
(5) Consecuences for certain subalgebras of $H^{\infty}(\Omega)$

Admissible domains and maps

Definition

- $\Omega \subset \mathbb{C}$ a domain such that $\partial \Omega$ is a disjoint finite union of piecewise analytic Jordan curves. We assume that the interior angles of the "corners" of $\partial \Omega$ are between 0 and π.
- $\left\{J_{k}\right\}_{k=1}^{n}$ closed analytic arcs intersecting each other at most in two points and such that $\partial \Omega=\bigcup J_{k}$.
- $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ analytic in Ω, continuous up to the boundary plus some extra regularity conditions (see next slide).
- $\left|\varphi_{k}\right|=1$ in J_{k}.
- φ_{k}^{\prime} does not vanish in J_{k}.
- $\varphi_{k}(\zeta) \neq \varphi_{k}(z)$ if $\zeta \in J_{k}, z \in \bar{\Omega}$, and $z \neq \zeta$.

Regularity conditions

- For $k=1, \ldots, n$, there is an open set $\Omega_{k} \supset \Omega$ such that the interior of J_{k} relative to $\partial \Omega$ is contained in $\Omega_{k}, \varphi_{k} \in A\left(\bar{\Omega}_{k}\right)$ and φ_{k}^{\prime} is of class Hölder α in Ω_{k}.
- If z_{0} is an endpoint of J_{k}, then there exists an open circular sector $S_{k}\left(z_{0}\right)$ wih vertex on z_{0} and such that $S_{k}\left(z_{0}\right) \subset \Omega_{k}$ and $J_{k} \cap \mathbb{D}_{\varepsilon}\left(z_{0}\right) \subset S_{k}\left(z_{0}\right) \cup\left\{z_{0}\right\}$, for some $\varepsilon>0$. If z_{0} is a common endpoint of J_{k} and J_{l}, we require $\left(S_{k}\left(z_{0}\right) \cap S_{l}\left(z_{0}\right)\right) \backslash \bar{\Omega} \neq \emptyset$.

Separation of singularities with the composition

Theorem

Let Ω and $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ be admissible. Then there exist bounded linear operators $F_{k}: H^{\infty}(\Omega) \rightarrow H^{\infty}(\mathbb{D})$ such that the operator

$$
f \mapsto f-\sum_{k=1}^{n} F_{k}(f) \circ \varphi_{k}
$$

is compact in $H^{\infty}(\Omega)$ and its range is contained in $A(\bar{\Omega})$. Moreover, $F_{k} \operatorname{map} A(\bar{\Omega})$ into $A(\overline{\mathbb{D}})$.

Techniques of the proof

- The integral operator

$$
f \mapsto \int_{J_{k}}\left[\frac{1}{w-z}-\frac{\varphi_{k}^{\prime}(w)}{\varphi_{k}(w)-\varphi_{k}(z)}\right] f(w) d w
$$

is weakly singular. Hence compact.

- Replace the Cauchy integrals

$$
\int_{J_{k}} \frac{1}{w-z} f(w) d w
$$

by modified Cauchy integrals

$$
\int_{J_{k}} \frac{\varphi_{k}^{\prime}(w)}{\varphi_{k}(w)-z} f(w) d w,
$$

which are analytic in $\mathbb{C} \backslash \varphi_{k}\left(J_{k}\right)$.

- Use the trick of Havin-Nersessian to get H^{∞} functions when cutting f into a sum of Cauchy integrals in the arcs J_{k}.

Finite codimension

Theorem

If Ω and Φ are admissible, then \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\bar{\Omega})$ respectively.

```
Proof.
Put Gf = \sum 兏=1 F}\mp@subsup{F}{k}{}(f)\circ\mp@subsup{\varphi}{k}{}\mathrm{ . Then G:H}\mp@subsup{H}{}{\infty}(\Omega)->\mp@subsup{H}{}{\infty}(\Omega)\mathrm{ and }G-l is compact. Hence
GH
GH
For }\mp@subsup{\mathcal{A}}{\Phi}{}\mathrm{ , use the restriction G|A(役).
In fact, we also prove that \mathcal{H}
this is that many of our operators have a pre-adjoint operator.
```


Finite codimension

Theorem

If Ω and Φ are admissible, then \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\bar{\Omega})$ respectively.

Proof.

Put $G f=\sum_{k=1}^{n} F_{k}(f) \circ \varphi_{k}$. Then $G: H^{\infty}(\Omega) \rightarrow H^{\infty}(\Omega)$ and $G-l$ is compact. Hence, $G H^{\infty}(\Omega)$ is a closed subspace of finite codimension in $H^{\infty}(\Omega)$. Note that $G H^{\infty}(\Omega) \subset \mathcal{H}_{\phi}$.

For \mathcal{A}_{Φ}, use the restriction $G \mid A(\bar{\Omega})$.
In fact, we also prove that \mathcal{H}_{ϕ} is weak*-closed in $H^{\infty}(\Omega)$. The main idea in the proof of this is that many of our operators have a pre-adjoint operator.

Finite codimension

Theorem

If Ω and Φ are admissible, then \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\bar{\Omega})$ respectively.

Proof.

Put $G f=\sum_{k=1}^{n} F_{k}(f) \circ \varphi_{k}$. Then $G: H^{\infty}(\Omega) \rightarrow H^{\infty}(\Omega)$ and $G-l$ is compact. Hence, $G H^{\infty}(\Omega)$ is a closed subspace of finite codimension in $H^{\infty}(\Omega)$. Note that $G H^{\infty}(\Omega) \subset \mathcal{H}_{\phi}$.

For \mathcal{A}_{Φ}, use the restriction $G \mid A(\bar{\Omega})$.
In fact, we also prove that \mathcal{H}_{Φ} is weak*-closed in $H^{\infty}(\Omega)$. The main idea in the proof of this is that many of our operators have a pre-adjoint operator.

Equalities $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$

Theorem

If Ω and Φ are admissible, Φ is injective in $\bar{\Omega}$, and Φ^{\prime} does not vanish in Ω, then $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$.

Recall: Φ being injective and Φ^{\prime} not vanishing are necessary conditions for the equalities to hold.

```
The proof uses Banach algebra tools and the following classification of the
one-codimensional closed unital subalgebras }\mp@subsup{A}{0}{}\mathrm{ of a unital Banach algebra }A\mathrm{ (Gorin,
1969)
```


A_{0} can have one of the following two forms:

- $A_{0}=\operatorname{ker}\left(v_{1}-\psi_{2}\right)$, where $\psi_{1}, v_{2} \in \mathfrak{M}(A), \psi_{1} \neq \psi_{2}$. (Informally, A_{0} are the functions which coincide at the points ψ_{1} and ψ_{2}).
- $A_{0}=\operatorname{ker} \eta$, where $\eta \neq 0$ is a continuous derivation at some $\psi \in \mathfrak{M}(A)$, i.e., $\eta \in A^{*}$ and

$$
\eta(f g)=\eta(f) \psi(g)+\psi(f) \eta(g), \quad \forall f, g \in A .
$$

(Informally, A_{0} are the functions whose derivative at the point ψ vanishes).

Equalities $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$

Theorem

If Ω and Φ are admissible, Φ is injective in $\bar{\Omega}$, and Φ^{\prime} does not vanish in Ω, then $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$.

Recall: Φ being injective and Φ^{\prime} not vanishing are necessary conditions for the equalities to hold.

The proof uses Banach algebra tools and the following classification of the one-codimensional closed unital subalgebras A_{0} of a unital Banach algebra A (Gorin, 1969).
A_{0} can have one of the following two forms:

- $A_{0}=\operatorname{ker}\left(\psi_{1}-\psi_{2}\right)$, where $\psi_{1}, \psi_{2} \in \mathfrak{M}(A), \psi_{1} \neq \psi_{2}$. (Informally, \boldsymbol{A}_{0} are the functions which coincide at the points ψ_{1} and ψ_{2}).
- $A_{0}=\operatorname{ker} \eta$, where $\eta \neq 0$ is a continuous derivation at some $\psi \in \mathfrak{M}(A)$, i.e., $\eta \in A^{*}$ and

$$
\eta(f g)=\eta(f) \psi(g)+\psi(f) \eta(g), \quad \forall f, g \in A .
$$

(Informally, A_{0} are the functions whose derivative at the point ψ vanishes).

Summary

(1) Motivation: generation of algebras and algebras in analytic curves

2 Separation of singularities

3 Main results about generation of algebras
4. Main results about algebras in analytic curves
(5) Consecuences for certain subalgebras of $H^{\infty}(\Omega)$

Algebras of functions in analytic curves

Recall: $\mathcal{V}=\Phi(\Omega)$ is an analytic curve in the polydisc \mathbb{D}^{n}. The pullback $\Phi^{*} f=f \circ \Phi$ takes function in \mathcal{V} to functions in Ω.

Theorem

If Ω and Φ are admissible, then $\Phi^{*} H^{\infty}(\mathcal{V})=\mathcal{H}_{\Phi}$ and $\Phi^{*} A(\overline{\mathcal{V}})=\mathcal{A}_{\Phi}$.
The main tool of the proof is a characterization of the maximal ideal space and derivations of a glued subalgebra. This is a subalgebra B of an algebra A of the form

(Informally, B is the subalgreba of all functions in A which "glue" some determined points)
It turns out that $\mathfrak{M}(B)$ is obtained from $\mathfrak{M}(A)$ by gluing the points α_{j} and β_{j}. Also, the space of deriviations of B at a point $\psi_{B} \in \mathfrak{M}(B)$ is
$\operatorname{Der}_{\psi_{B}}(B)$

$\operatorname{Der}_{\psi}(A)$
where $i^{*}: \mathfrak{M}(A) \rightarrow \mathfrak{M}(B)$ is the quotient map.
We also use a classifications of finite codimensional subalgebras due to Gamelin.

Algebras of functions in analytic curves

Recall: $\mathcal{V}=\Phi(\Omega)$ is an analytic curve in the polydisc \mathbb{D}^{n}. The pullback $\Phi^{*} f=f \circ \Phi$ takes function in \mathcal{V} to functions in Ω.

Theorem

If Ω and Φ are admissible, then $\Phi^{*} H^{\infty}(\mathcal{V})=\mathcal{H}_{\Phi}$ and $\Phi^{*} A(\overline{\mathcal{V}})=\mathcal{A}_{\Phi}$.
The main tool of the proof is a characterization of the maximal ideal space and derivations of a glued subalgebra. This is a subalgebra B of an algebra A of the form

$$
B=\left\{f \in A: \alpha_{j}(f)=\beta_{j}(f), j=1, \ldots, r\right\}, \quad \alpha_{j}, \beta_{j} \in \mathfrak{M}(A), \alpha_{j} \neq \beta_{j} .
$$

(Informally, B is the subalgreba of all functions in A which "glue" some determined points).

> It turns out that $\mathfrak{N}(B)$ is obtained from $\mathfrak{M}(A)$ by gluing the points α_{j} and β_{j}. Also, the space of deriviations of B at a point $\psi_{B} \in \mathfrak{M}(B)$ is

$\operatorname{Der}_{\psi_{B}}(B) \cong \oplus \operatorname{Der}(A)$
where $i^{*}: \mathfrak{M}(A) \rightarrow \mathfrak{M}(B)$ is the quotient map.
We also use a classifications of finite codimensional subalgebras due to Gamelin

Algebras of functions in analytic curves

Recall: $\mathcal{V}=\Phi(\Omega)$ is an analytic curve in the polydisc \mathbb{D}^{n}. The pullback $\Phi^{*} f=f \circ \Phi$ takes function in \mathcal{V} to functions in Ω.

Theorem

If Ω and Φ are admissible, then $\Phi^{*} H^{\infty}(\mathcal{V})=\mathcal{H}_{\Phi}$ and $\Phi^{*} A(\overline{\mathcal{V}})=\mathcal{A}_{\Phi}$.
The main tool of the proof is a characterization of the maximal ideal space and derivations of a glued subalgebra. This is a subalgebra B of an algebra A of the form

$$
B=\left\{f \in A: \alpha_{j}(f)=\beta_{j}(f), j=1, \ldots, r\right\}, \quad \alpha_{j}, \beta_{j} \in \mathfrak{M}(A), \alpha_{j} \neq \beta_{j}
$$

(Informally, B is the subalgreba of all functions in A which "glue" some determined points).
It turns out that $\mathfrak{M}(B)$ is obtained from $\mathfrak{M}(A)$ by gluing the points α_{j} and β_{j}. Also, the space of deriviations of B at a point $\psi_{B} \in \mathfrak{M}(B)$ is

$$
\operatorname{Der}_{\psi_{B}}(B) \cong \bigoplus_{\psi \in\left(i^{*}\right)^{-1}\left(\psi_{B}\right)} \operatorname{Der}_{\psi}(A)
$$

where $i^{*}: \mathfrak{M}(A) \rightarrow \mathfrak{M}(B)$ is the quotient map.
We also use a classifications of finite codimensional subalgebras due to Gamelin.

The Agler algebra of \mathbb{D}^{n}

Is the algebra of analytic functions f in \mathbb{D}^{n} such that the norm

$$
\|f\|_{\mathcal{S A}\left(\mathbb{D}^{n}\right)}=\sup \left\|f\left(T_{1}, \ldots, T_{n}\right)\right\|
$$

is finite. The supremum is taken over all tuples $\left(T_{1}, \ldots, T_{n}\right)$ of commuting contractions with $\sigma\left(T_{j}\right) \subset \mathbb{D}$.

- For every $n, \mathcal{S A}\left(\mathbb{D}^{n}\right) \subset H^{\infty}\left(\mathbb{D}^{n}\right)$
- For $n=1$, there is equality and the norms are the same (von Neumann's inequality)
- For $n=2$, there is equality and the norms are the same (Andô's theorem)
- For $n \geq 3$, the norms are different and it is believed that the inclusion is proper

Remark: every function which is a linear combination of functions which depend only on one or two of the variables belongs to $\mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right)$.

Extension to the Agler algebra

Theorem

If Ω and Φ are admissible, then every $f \in H^{\infty}(\mathcal{V})$ can be extended to an $F \in \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right)$ with $\|F\|_{\mathcal{A A}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$. If f is continuous in $\overline{\mathcal{V}}$, then F can be taken to be continuous in $\overline{\mathbb{D}}^{n}$.

Idea of the proof: Take $f \in H^{\infty}(\mathcal{V})$. Then $\Phi^{*} f \in \mathcal{H}_{\Phi}$. We need to produce $F \in \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right)$ such that $\Phi^{*} F=\Phi^{*} f$. If

$$
\left(\Phi^{*} f\right)(z)=f_{1}\left(\varphi_{1}\left(z_{1}\right)\right)+\ldots+f_{n}\left(\varphi_{n}\left(z_{n}\right)\right)
$$

just put $F\left(z_{1}, \ldots, z_{n}\right)=f_{1}\left(z_{1}\right)+\ldots+f_{n}\left(z_{n}\right)$.
The set of functions in \mathcal{H}_{ϕ} that can be written as in (1) has finite codimension. We use Fredholm theory to extend our argument to all \mathcal{H}_{Φ}.

Extension to the Agler algebra

Theorem

If Ω and Φ are admissible, then every $f \in H^{\infty}(\mathcal{V})$ can be extended to an $F \in \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right)$ with $\|F\|_{\mathcal{A A}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$. If f is continuous in $\overline{\mathcal{V}}$, then F can be taken to be continuous in $\overline{\mathbb{D}}^{n}$.

Idea of the proof: Take $f \in H^{\infty}(\mathcal{V})$. Then $\Phi^{*} f \in \mathcal{H}_{\Phi}$. We need to produce $F \in \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right)$ such that $\Phi^{*} F=\Phi^{*} f$. If

$$
\begin{equation*}
\left(\Phi^{*} f\right)(z)=f_{1}\left(\varphi_{1}\left(z_{1}\right)\right)+\ldots+f_{n}\left(\varphi_{n}\left(z_{n}\right)\right), \tag{1}
\end{equation*}
$$

just put $F\left(z_{1}, \ldots, z_{n}\right)=f_{1}\left(z_{1}\right)+\ldots+f_{n}\left(z_{n}\right)$.
The set of functions in \mathcal{H}_{Φ} that can be written as in (1) has finite codimension. We use Fredholm theory to extend our argument to all \mathcal{H}_{ϕ}.

Previous extension results

Assume that there is an analytic variety $\tilde{\mathcal{V}}$ in a neighbourhood of $\overline{\mathbb{D}}^{n}$ such that $\tilde{\mathcal{V}} \cap \mathbb{D}^{n}=\mathcal{V}$.
Polyakov and Khenkin show that every $f \in H^{\infty}(\mathcal{V})$ can be extended to $F \in H^{\infty}\left(\mathbb{D}^{n}\right)$ with $\|F\|_{H^{\infty}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

- We do not assume the existence of $\widetilde{\mathcal{V}}$.
- We produce an extension $F \in \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right)$.

Indeed, we show that there is a finite codimensional subspace of $H^{\infty}(\mathcal{V})$ such that every function in this subspace can be extended to an F of the form

$$
F\left(z_{1}, \ldots, z_{n}\right)=F_{1}\left(z_{1}\right)+F_{2}\left(z_{2}\right)+\cdots+F_{n}\left(z_{n}\right), \quad F_{j} \in H^{\infty}(\mathbb{D}),
$$

with $\left\|F_{j}\right\|_{H^{\infty}(\mathbb{D})} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

Previous extension results

Assume that there is an analytic variety $\widetilde{\mathcal{V}}$ in a neighbourhood of $\overline{\mathbb{D}}^{n}$ such that $\tilde{\mathcal{V}} \cap \mathbb{D}^{n}=\mathcal{V}$.
Polyakov and Khenkin show that every $f \in H^{\infty}(\mathcal{V})$ can be extended to $F \in H^{\infty}\left(\mathbb{D}^{n}\right)$ with $\|F\|_{H^{\infty}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

- We do not assume the existence of $\widetilde{\mathcal{V}}$.
- We produce an extension $F \in \mathcal{S A}\left(\mathbb{D}^{n}\right)$.

Indeed, we show that there is a finite codimensional subspace of $H^{\infty}(\mathcal{V})$ such that every function in this subspace can be extended to an F of the form

$$
F\left(z_{1}, \ldots, z_{n}\right)=F_{1}\left(z_{1}\right)+F_{2}\left(z_{2}\right)+\cdots+F_{n}\left(z_{n}\right), \quad F_{j} \in H^{\infty}(\mathbb{D}),
$$

with $\left\|F_{j}\right\|_{H^{\infty}(\mathbb{D})} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

Previous extension results

Assume that there is an analytic variety $\widetilde{\mathcal{V}}$ in a neighbourhood of $\overline{\mathbb{D}}^{n}$ such that $\tilde{\mathcal{V}} \cap \mathbb{D}^{n}=\mathcal{V}$.
Polyakov and Khenkin show that every $f \in H^{\infty}(\mathcal{V})$ can be extended to $F \in H^{\infty}\left(\mathbb{D}^{n}\right)$ with $\|F\|_{H^{\infty}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

- We do not assume the existence of $\widetilde{\mathcal{V}}$.
- We produce an extension $F \in \mathcal{S A}\left(\mathbb{D}^{n}\right)$.

Indeed, we show that there is a finite codimensional subspace of $H^{\infty}(\mathcal{V})$ such that every function in this subspace can be extended to an F of the form

$$
F\left(z_{1}, \ldots, z_{n}\right)=F_{1}\left(z_{1}\right)+F_{2}\left(z_{2}\right)+\cdots+F_{n}\left(z_{n}\right), \quad F_{j} \in H^{\infty}(\mathbb{D}),
$$

with $\left\|F_{j}\right\|_{H^{\infty}(\mathbb{D})} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

Summary

(4) Motivation: generation of algebras and algebras in analytic curves
(2) Separation of singularities
(3) Main results about generation of algebras

4 Main results about algebras in analytic curves
(5) Consecuences for certain subalgebras of $H^{\infty}(\Omega)$

The algebra $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$

- X a set, ψ a collection of complex-valued functions in X
- $\sup \{|\psi(x)|: \psi \in \Psi\}<1$, for all $x \in X$
- ψ separates the points of X

Then Ψ is a collection of test functions on X.

A positive kernel $k: X \times X \rightarrow \mathcal{B}^{*}\left(\mathcal{B}^{*}\right.$ the dual of a C^{*}-algebra \mathcal{B}) is a function such that for every finite $F \subset X$ and $f: F \rightarrow \mathcal{B}$

\mathcal{K}_{ψ} the collection of positive kernels k on X such that $\left(1-v,(x) \gamma,(y)^{*}\right) k(x, y)$

```
is also positive for every }\psi\in
\(H^{\infty}\left(\mathcal{K}_{\Psi}\right)\) the algebra of functions \(f: X \rightarrow \mathbb{C}\) such that
```

\square
is positive for every $k \in \mathcal{K}_{\psi}$ for some $C>0$. The smallest such C gives $\|f\|_{H^{\infty}\left(\mathcal{K}_{\psi}\right)}$.
Important applications in Operator Theory. Introduced by Dritschel and McCullough, 2007.

The algebra $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$

- X a set, Ψ a collection of complex-valued functions in X
- $\sup \{|\psi(x)|: \psi \in \Psi\}<1$, for all $x \in X$
- ψ separates the points of X

Then Ψ is a collection of test functions on X.
A positive kernel $k: X \times X \rightarrow \mathcal{B}^{*}\left(\mathcal{B}^{*}\right.$ the dual of a C^{*}-algebra $\left.\mathcal{B}\right)$ is a function such that for every finite $F \subset X$ and $f: F \rightarrow \mathcal{B}$

$$
\sum_{a, b \in F} k(a, b)\left(f(b)^{*} f(a)\right) \geq 0 .
$$

\mathcal{K}_{ψ} the collection of positive kernels k on X such that

is also positive for every $\psi \in \Psi$.
 $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$ the algebra of functions $f: X \rightarrow \mathbb{C}$ such that

\square
is positive for every $k \in \mathcal{K}_{\Psi}$ for some $C>0$. The smallest such C gives $\|f\|_{H^{\infty}\left(\mathcal{K}_{\psi}\right)}$.

Important applications in Operator Theory. Introduced by Dritschel and McCullough, 2007.

The algebra $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$

- X a set, Ψ a collection of complex-valued functions in X
- $\sup \{|\psi(x)|: \psi \in \Psi\}<1$, for all $x \in X$
- Ψ separates the points of X

Then Ψ is a collection of test functions on X.

A positive kernel $k: X \times X \rightarrow \mathcal{B}^{*}\left(\mathcal{B}^{*}\right.$ the dual of a C^{*}-algebra $\left.\mathcal{B}\right)$ is a function such that for every finite $F \subset X$ and $f: F \rightarrow \mathcal{B}$

$$
\sum_{a, b \in F} k(a, b)\left(f(b)^{*} f(a)\right) \geq 0
$$

\mathcal{K}_{ψ} the collection of positive kernels k on X such that

$$
\left(1-\psi(x) \psi(y)^{*}\right) k(x, y)
$$

is also positive for every $\psi \in \Psi$. $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$ the algebra of functions $f: X \rightarrow \mathbb{C}$ such that

$$
\left(C^{2}-f(x) f(y)^{*}\right) k(x, y)
$$

is positive for every $k \in \mathcal{K}_{\Psi}$ for some $C>0$. The smallest such C gives $\|f\|_{H^{\infty}\left(\mathcal{K}_{\psi}\right)}$.

Important applications in Operator Theory. Introduced by Dritschel and McCullough, 2007.

The algebra $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$

- X a set, Ψ a collection of complex-valued functions in X
- $\sup \{|\psi(x)|: \psi \in \Psi\}<1$, for all $x \in X$
- Ψ separates the points of X

Then Ψ is a collection of test functions on X.

A positive kernel $k: X \times X \rightarrow \mathcal{B}^{*}\left(\mathcal{B}^{*}\right.$ the dual of a C^{*}-algebra $\left.\mathcal{B}\right)$ is a function such that for every finite $F \subset X$ and $f: F \rightarrow \mathcal{B}$

$$
\sum_{a, b \in F} k(a, b)\left(f(b)^{*} f(a)\right) \geq 0
$$

\mathcal{K}_{ψ} the collection of positive kernels k on X such that

$$
\left(1-\psi(x) \psi(y)^{*}\right) k(x, y)
$$

is also positive for every $\psi \in \Psi$. $H^{\infty}\left(\mathcal{K}_{\Psi}\right)$ the algebra of functions $f: X \rightarrow \mathbb{C}$ such that

$$
\left(C^{2}-f(x) f(y)^{*}\right) k(x, y)
$$

is positive for every $k \in \mathcal{K}_{\Psi}$ for some $C>0$. The smallest such C gives $\|f\|_{H^{\infty}\left(\mathcal{K}_{\psi}\right)}$.
Important applications in Operator Theory. Introduced by Dritschel and McCullough, 2007.

The relation with $\mathcal{S A}\left(\mathbb{D}^{n}\right)$

- $\Phi: \Omega \rightarrow \mathbb{D}^{n}$
- $\mathcal{V}=\Phi(\Omega)$

Then $\Psi=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$, where $\psi_{k}\left(z_{1}, \ldots, z_{n}\right)=z_{k}$, is a collection of test functions in \mathcal{V} and

$$
\begin{gathered}
H^{\infty}\left(\mathcal{K}_{\Psi}\right)=\left\{F \mid \mathcal{V}: F \in \mathcal{S A}\left(\mathbb{D}^{n}\right)\right\}, \\
\|f\|_{H^{\infty}\left(\mathcal{K}_{\Psi}\right)}=\inf \left\{\|F\|_{\mathcal{S A}\left(\mathbb{D}^{n}\right)}: F \in \mathcal{S A}\left(\mathbb{D}^{n}\right), F \mid \mathcal{V}=f\right\}
\end{gathered}
$$

The relation with $\mathcal{S A}\left(\mathbb{D}^{n}\right)$

- $\Phi: \Omega \rightarrow \mathbb{D}^{n}$
- $\mathcal{V}=\Phi(\Omega)$

Then $\Psi=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$, where $\psi_{k}\left(z_{1}, \ldots, z_{n}\right)=z_{k}$, is a collection of test functions in \mathcal{V} and

$$
\begin{gathered}
H^{\infty}\left(\mathcal{K}_{\Psi}\right)=\left\{F \mid \mathcal{V}: F \in \mathcal{S A}\left(\mathbb{D}^{n}\right)\right\}, \\
\|f\|_{H^{\infty}\left(\mathcal{K}_{\Psi}\right)}=\inf \left\{\|F\|_{\mathcal{S A}\left(\mathbb{D}^{n}\right)}: F \in \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right), F \mid \mathcal{V}=f\right\} .
\end{gathered}
$$

As sets, we can identify $H^{\infty}\left(\mathcal{K}_{\psi}\right)$ with $\Phi^{*} \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right) \subset H^{\infty}(\Omega)$ (the norms are not the same).

Inclusions of several subalgebras of $H^{\infty}(\Omega)$

We always have the inclusions:

$$
\mathcal{H}_{\Phi} \subset \Phi^{*} \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right) \subset \Phi^{*} H^{\infty}\left(\mathbb{D}^{n}\right) \subset \Phi^{*} H^{\infty}(\mathcal{V}) \subset H^{\infty}(\Omega) .
$$

In our setting, we have shown:
and \mathcal{H}_{Φ} has finite codimension in $H^{\infty}(\Omega)$.
Moreover, if Φ is injective and Φ^{\prime} does not vanish (i.e., if ν is non-singular)

$$
\mathcal{H}_{\Phi}=H^{\infty}(\Omega) .
$$

Inclusions of several subalgebras of $H^{\infty}(\Omega)$

We always have the inclusions:

$$
\mathcal{H}_{\Phi} \subset \Phi^{*} \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right) \subset \Phi^{*} H^{\infty}\left(\mathbb{D}^{n}\right) \subset \Phi^{*} H^{\infty}(\mathcal{V}) \subset H^{\infty}(\Omega) .
$$

In our setting, we have shown:

$$
\mathcal{H}_{\Phi}=\Phi^{*} H^{\infty}(\mathcal{V})
$$

and \mathcal{H}_{Φ} has finite codimension in $H^{\infty}(\Omega)$.
Moreover, if ϕ is injective and Φ^{\prime} does not vanish (i.e., if \mathcal{V} is non-singular)

$$
\mathcal{H}_{\Phi}=H^{\infty}(\Omega) .
$$

Inclusions of several subalgebras of $H^{\infty}(\Omega)$

We always have the inclusions:

$$
\mathcal{H}_{\Phi} \subset \Phi^{*} \mathcal{S} \mathcal{A}\left(\mathbb{D}^{n}\right) \subset \Phi^{*} H^{\infty}\left(\mathbb{D}^{n}\right) \subset \Phi^{*} H^{\infty}(\mathcal{V}) \subset H^{\infty}(\Omega) .
$$

In our setting, we have shown:

$$
\mathcal{H}_{\Phi}=\Phi^{*} H^{\infty}(\mathcal{V})
$$

and \mathcal{H}_{Φ} has finite codimension in $H^{\infty}(\Omega)$. Moreover, if Φ is injective and Φ^{\prime} does not vanish (i.e., if \mathcal{V} is non-singular)

$$
\mathcal{H}_{\Phi}=H^{\infty}(\Omega) .
$$

