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Generation of algebras in planar domains

Ω ⊂ C a domain

A a uniform algebra of analytic functions in Ω, A = H∞(Ω) or
A = A(Ω) = H(Ω) ∩ C(Ω)

Φ ⊂ A (tipically finite Φ = {ϕ1, . . . , ϕn})

Denote by AΦ the smallest closed (or weak∗ closed) subalgebra of A containing Φ.

Natural questions:

When AΦ = A?

When AΦ has finite codimension in A?

Several papers study algebras of type A(Ω) and give sufficient conditions for AΦ = A
(Wermer, Bishop, Blumenthal, Sibony-Wermer).
However, even in the simple case A = A(D), Φ = {ϕ1, ϕ2}, a set of necessary and
sufficient conditions for AΦ = A is not known.
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A different kind of subalgebra

Note that every f ∈ AΦ is a limit of polynomials in ϕ1, . . . , ϕn.

Assume that ϕk : Ω→ D. We can define:

AΦ the smallest subalgebra of A(Ω) containing all functions g ◦ ϕk , g ∈ A(D)

HΦ the smallest subalgebra of H∞(Ω) containing all functions g ◦ ϕk , g ∈ H∞(D)

These are not necessarily closed.

f ∈ AΦ is of the form

f (z) =
N∑

k=1

g1,k (ϕ1(z))g2,k (ϕ2(z)) · · · gn,k (ϕn(z)), gj,k ∈ A(D).

Remark:

If A = A(Ω), then AΦ ⊂ AΦ

If A = H∞(Ω), then HΦ ⊂ AΦ

These algebras have applications to Operator Theory and to the study of uniform
algebras in analytic curves.
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Algebras in analytic curves

V ⊂ Dn an analytic curve inside the polydisc

Algebras H∞(V) and A(V)

Natural question: describe this algebras.

An example:

Ω ⊂ C a domain

Φ = (ϕ1, . . . , ϕn) : Ω→ Dn

Put V = Φ(Ω)

The pullback Φ∗f = f ◦ Φ.

Φ∗A(V) is a subalgebra of A(Ω)

Φ∗H∞(V) is a subalgebra of H∞(Ω)

Question: describe these subalgebras.

One application: extension results. Prove that every f ∈ H∞(V) can be extended to an
F in some algebra of functions in Dn.
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A simple example

Ω1,Ω2 two Jordan domains
Ω = Ω1 ∩ Ω2

ϕk : Ωk → D, k = 1, 2, Riemann mappings

We want to write f ∈ H∞(Ω) as

f (z) = g1(ϕ1(z)) + g2(ϕ2(z)), g1, g2 ∈ H∞(D).

Since ϕk are univalent, putting gk = hk ◦ ϕk , this is equivalent to

f (z) = h1(z) + h2(z), hk ∈ H∞(Ωk ).

This decomposition is a separation of singularities: In some sense, f is singular in
J1 ∪ J2 and hk is singular only in Jk .
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Havin-Nersessian separation of singularities

First try:

f (z) =

∫
J1∪J2

f (w) dw
w − z

=

∫
J1

f (w) dw
w − z

+

∫
J2

f (w) dw
w − z

.

Put
hk (z) =

∫
Jk

f (w) dw
w − z

.

Then f = h1 + h2 and hk ∈ H(Ωk ).
However, hk /∈ H∞(Ωk ). hk is not bounded near the endpoints of Jk , because it has
singularities of logarithmic type there.
This simple procedure would have worked for Hp, p <∞. But it does not work for H∞.
We have to do something extra at the endpoints.
The idea of Havin-Nersessian: Put {z1, z2} = J1 ∩ J2. Put Γk = Jk ∩Dε(zk ). Let Rk be a
rigid rotation around zk such that Rk (Γk ) is outside Ω. Put

h1(z) =

∫
J1

f (w) dw
w − z

+

∫
R2(Γ2)

f (R−1
2 (w)) dw
w − z

−
∫

R1(Γ1)

f (R−1
1 (w)) dw
w − z

.

h2(z) =

∫
J2

f (w) dw
w − z

−
∫

R2(Γ2)

f (R−1
2 (w)) dw
w − z

+

∫
R1(Γ1)

f (R−1
1 (w)) dw
w − z

.

Then hk ∈ H∞(Ωk ).
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Non-univalent functions

We have proved: In the simple example Ω = Ω1 ∩Ω2, Φ = {ϕ1, ϕ2} Riemann mappings,
we have HΦ = H∞(Ω). Even more is true: every f ∈ H∞(Ω) can be written as

f (z) = g1(ϕ(z)) + g2(ϕ(z)).

The same kind of arguments work when ϕk are univalent. But what about the case
when ϕk are not univalent?

Two trivial remarks:

If Φ = (ϕ1, . . . , ϕn) “glues” two points z1, z2 ∈ Ω, i.e., Φ(z1) = Φ(z2), then every
f ∈ HΦ glues these two points

If Φ′ vanishes at some point z0 ∈ Ω, then f ′(z0) = 0 for every f ∈ HΦ.

Even if Φ is injective and Φ′ does not vanish, it is possible to show that in general one
cannot hope to write every f as

f (z) = g1(ϕ1(z)) + . . .+ gn(ϕn(z)).
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Admissible domains and maps

Definition
Ω ⊂ C a domain such that ∂Ω is a disjoint finite union of piecewise analytic Jordan
curves. We assume that the interior angles of the “corners” of ∂Ω are between 0
and π.

{Jk}n
k=1 closed analytic arcs intersecting each other at most in two points and such

that ∂Ω =
⋃

Jk .

Φ = (ϕ1, . . . , ϕn) : Ω→ Dn
analytic in Ω, continuous up to the boundary plus some

extra regularity conditions (see next slide).

|ϕk | = 1 in Jk .

ϕ′k does not vanish in Jk .

ϕk (ζ) 6= ϕk (z) if ζ ∈ Jk , z ∈ Ω, and z 6= ζ.
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Regularity conditions

For k = 1, . . . , n, there is an open set Ωk ⊃ Ω such that the interior of Jk relative to
∂Ω is contained in Ωk , ϕk ∈ A(Ωk ) and ϕ′k is of class Hölder α in Ωk .

If z0 is an endpoint of Jk , then there exists an open circular sector Sk (z0) wih
vertex on z0 and such that Sk (z0) ⊂ Ωk and Jk ∩ Dε(z0) ⊂ Sk (z0) ∪ {z0}, for some
ε > 0. If z0 is a common endpoint of Jk and Jl , we require (Sk (z0)∩Sl (z0)) \Ω 6= ∅.
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Separation of singularities with the composition

Theorem

Let Ω and Φ = (ϕ1, . . . , ϕn) : Ω→ Dn
be admissible. Then there exist bounded linear

operators Fk : H∞(Ω)→ H∞(D) such that the operator

f 7→ f −
n∑

k=1

Fk (f ) ◦ ϕk

is compact in H∞(Ω) and its range is contained in A(Ω).
Moreover, Fk map A(Ω) into A(D).
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Techniques of the proof

The integral operator

f 7→
∫

Jk

[
1

w − z
− ϕ′k (w)

ϕk (w)− ϕk (z)

]
f (w) dw

is weakly singular. Hence compact.

Replace the Cauchy integrals ∫
Jk

1
w − z

f (w) dw

by modified Cauchy integrals ∫
Jk

ϕ′k (w)

ϕk (w)− z
f (w) dw ,

which are analytic in C \ ϕk (Jk ).

Use the trick of Havin–Nersessian to get H∞ functions when cutting f into a sum
of Cauchy integrals in the arcs Jk .
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Finite codimension

Theorem
If Ω and Φ are admissible, then HΦ and AΦ are closed subalgebras of finite
codimension in H∞(Ω) and A(Ω) respectively.

Proof.

Put Gf =
∑n

k=1 Fk (f ) ◦ ϕk . Then G : H∞(Ω)→ H∞(Ω) and G − I is compact. Hence,
GH∞(Ω) is a closed subspace of finite codimension in H∞(Ω). Note that
GH∞(Ω) ⊂ HΦ.

For AΦ, use the restriction G|A(Ω).

In fact, we also prove that HΦ is weak∗-closed in H∞(Ω). The main idea in the proof of
this is that many of our operators have a pre-adjoint operator.
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Equalities HΦ = H∞(Ω) and AΦ = A(Ω)

Theorem

If Ω and Φ are admissible, Φ is injective in Ω, and Φ′ does not vanish in Ω, then
HΦ = H∞(Ω) and AΦ = A(Ω).

Recall: Φ being injective and Φ′ not vanishing are necessary conditions for the
equalities to hold.

The proof uses Banach algebra tools and the following classification of the
one-codimensional closed unital subalgebras A0 of a unital Banach algebra A (Gorin,
1969).

A0 can have one of the following two forms:

A0 = ker(ψ1 − ψ2), where ψ1, ψ2 ∈M(A), ψ1 6= ψ2. (Informally, A0 are the
functions which coincide at the points ψ1 and ψ2).

A0 = ker η, where η 6= 0 is a continuous derivation at some ψ ∈M(A), i.e., η ∈ A∗

and
η(fg) = η(f )ψ(g) + ψ(f )η(g), ∀f , g ∈ A.

(Informally, A0 are the functions whose derivative at the point ψ vanishes).
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Summary

1 Motivation: generation of algebras and algebras in analytic curves

2 Separation of singularities

3 Main results about generation of algebras

4 Main results about algebras in analytic curves

5 Consecuences for certain subalgebras of H∞(Ω)

Daniel Estévez (UAM) Generation of algebras and separation of singularities 13th October 2015 18 / 26



Algebras of functions in analytic curves

Recall: V = Φ(Ω) is an analytic curve in the polydisc Dn. The pullback Φ∗f = f ◦ Φ
takes function in V to functions in Ω.

Theorem

If Ω and Φ are admissible, then Φ∗H∞(V) = HΦ and Φ∗A(V) = AΦ.

The main tool of the proof is a characterization of the maximal ideal space and
derivations of a glued subalgebra. This is a subalgebra B of an algebra A of the form

B = {f ∈ A : αj (f ) = βj (f ), j = 1, . . . , r}, αj , βj ∈M(A), αj 6= βj .

(Informally, B is the subalgreba of all functions in A which “glue” some determined
points).
It turns out that M(B) is obtained from M(A) by gluing the points αj and βj . Also, the
space of deriviations of B at a point ψB ∈M(B) is

DerψB (B) ∼=
⊕

ψ∈(i∗)−1(ψB)

Derψ(A),

where i∗ : M(A)→M(B) is the quotient map.
We also use a classifications of finite codimensional subalgebras due to Gamelin.
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The Agler algebra of Dn

Is the algebra of analytic functions f in Dn such that the norm

‖f‖SA(Dn) = sup ‖f (T1, . . . ,Tn)‖

is finite. The supremum is taken over all tuples (T1, . . . ,Tn) of commuting contractions
with σ(Tj ) ⊂ D.

For every n, SA(Dn) ⊂ H∞(Dn)

For n = 1, there is equality and the norms are the same (von Neumann’s
inequality)

For n = 2, there is equality and the norms are the same (Andô’s theorem)

For n ≥ 3, the norms are different and it is believed that the inclusion is proper

Remark: every function which is a linear combination of functions which depend only
on one or two of the variables belongs to SA(Dn).

Daniel Estévez (UAM) Generation of algebras and separation of singularities 13th October 2015 20 / 26



Extension to the Agler algebra

Theorem
If Ω and Φ are admissible, then every f ∈ H∞(V) can be extended to an F ∈ SA(Dn)
with ‖F‖SA(Dn) ≤ C‖f‖H∞(V). If f is continuous in V, then F can be taken to be
continuous in Dn

.

Idea of the proof: Take f ∈ H∞(V). Then Φ∗f ∈ HΦ. We need to produce F ∈ SA(Dn)
such that Φ∗F = Φ∗f . If

(Φ∗f )(z) = f1(ϕ1(z1)) + . . .+ fn(ϕn(zn)), (1)

just put F (z1, . . . , zn) = f1(z1) + . . .+ fn(zn).

The set of functions in HΦ that can be written as in (1) has finite codimension. We use
Fredholm theory to extend our argument to all HΦ.
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Previous extension results

Assume that there is an analytic variety Ṽ in a neighbourhood of Dn
such that

Ṽ ∩ Dn = V.
Polyakov and Khenkin show that every f ∈ H∞(V) can be extended to F ∈ H∞(Dn)
with ‖F‖H∞(Dn) ≤ C‖f‖H∞(V).

We do not assume the existence of Ṽ.

We produce an extension F ∈ SA(Dn).

Indeed, we show that there is a finite codimensional subspace of H∞(V) such that
every function in this subspace can be extended to an F of the form

F (z1, . . . , zn) = F1(z1) + F2(z2) + · · ·+ Fn(zn), Fj ∈ H∞(D),

with ‖Fj‖H∞(D) ≤ C‖f‖H∞(V).
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The algebra H∞(KΨ)

X a set, Ψ a collection of complex-valued functions in X
sup{|ψ(x)| : ψ ∈ Ψ} < 1, for all x ∈ X
Ψ separates the points of X

Then Ψ is a collection of test functions on X .

A positive kernel k : X × X → B∗ (B∗ the dual of a C∗-algebra B) is a function such
that for every finite F ⊂ X and f : F → B∑

a,b∈F

k(a, b)(f (b)∗f (a)) ≥ 0.

KΨ the collection of positive kernels k on X such that

(1− ψ(x)ψ(y)∗)k(x , y)

is also positive for every ψ ∈ Ψ.
H∞(KΨ) the algebra of functions f : X → C such that

(C2 − f (x)f (y)∗)k(x , y)

is positive for every k ∈ KΨ for some C > 0. The smallest such C gives ‖f‖H∞(KΨ).

Important applications in Operator Theory. Introduced by Dritschel and McCullough,
2007.
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The relation with SA(Dn)

Φ : Ω→ Dn

V = Φ(Ω)

Then Ψ = {ψ1, . . . , ψn}, where ψk (z1, . . . , zn) = zk , is a collection of test functions in V
and

H∞(KΨ) = {F |V : F ∈ SA(Dn)},

‖f‖H∞(KΨ) = inf{‖F‖SA(Dn) : F ∈ SA(Dn), F |V = f}.

As sets, we can identify H∞(KΨ) with Φ∗SA(Dn) ⊂ H∞(Ω) (the norms are not the
same).
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Inclusions of several subalgebras of H∞(Ω)

We always have the inclusions:

HΦ ⊂ Φ∗SA(Dn) ⊂ Φ∗H∞(Dn) ⊂ Φ∗H∞(V) ⊂ H∞(Ω).

In our setting, we have shown:
HΦ = Φ∗H∞(V)

and HΦ has finite codimension in H∞(Ω).
Moreover, if Φ is injective and Φ′ does not vanish (i.e., if V is non-singular)

HΦ = H∞(Ω).
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