Separation of singularities, generation of algebras and complete K-spectral sets

Daniel Estévez

Universidad Autónoma de Madrid

Joint work with Michael Dritschel (Newcastle Univ.) and Dmitry Yakubovich (UAM)

IWOTA 2015 7th July 2015

Summary

- Test collections and complete *K*-spectral sets
- Separation of singularities
- Generation of algebras
- Fitting everything together: idea of the proofs of the results about test functions

Summary

- Test collections and complete K-spectral sets
- Separation of singularities
- Generation of algebras
- Fitting everything together: idea of the proofs of the results about test functions

Von Neumann's inequality

If T is a contraction on a Hilbert space H (i.e., $||T|| \le 1$), then

$$||p(T)|| \leq \max_{z \in \overline{\mathbb{D}}} |p(z)|,$$

for every polynomial *p*.

In fact

$$|f(T)||_{\mathcal{B}(H^s)} \leq \max_{z \in \overline{\mathbb{D}}} ||f(z)||,$$

for every for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \ge 1$.

Here,
$$f(T) = [f_{jk}(T)]_{j,k=1}^{s}$$

Von Neumann's inequality

If T is a contraction on a Hilbert space H (i.e., $||T|| \le 1$), then

$$\|p(T)\| \leq \max_{z \in \overline{\mathbb{D}}} |p(z)|,$$

for every polynomial *p*.

In fact,

$$||f(T)||_{\mathcal{B}(H^s)} \leq \max_{z \in \overline{\mathbb{D}}} ||f(z)||,$$

for every for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \ge 1$.

Here,
$$f(T) = [f_{jk}(T)]_{j,k=1}^{s}$$
.

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \widehat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$||f(T)||_{\mathcal{B}(H^s)} \leq K \max_{z \in X} ||f(z)||_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \ge 1$.

- T is a contraction if and only if $\overline{\mathbb{D}}$ is a complete 1-spectral set (von Neumann's inequality).
- T is similar to a contraction ($T = SAS^{-1}$, $||A|| \le 1$) if and only if $\overline{\mathbb{D}}$ is a complete K-spectral set for some K.
- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\widetilde{H} \supset H$ and $N \in \mathcal{B}(\widetilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

 $Sf(T)S^{-1} = P_H f(N)|H, \quad \forall f \text{ rational with no poles on } X.$

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \widehat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$||f(T)||_{\mathcal{B}(H^s)} \leq K \max_{z \in X} ||f(z)||_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \ge 1$.

- T is a contraction if and only if $\overline{\mathbb{D}}$ is a complete 1-spectral set (von Neumann's inequality).
- T is similar to a contraction ($T = SAS^{-1}$, $||A|| \le 1$) if and only if $\overline{\mathbb{D}}$ is a complete K-spectral set for some K.
- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\widetilde{H} \supset H$ and $N \in \mathcal{B}(\widetilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

 $Sf(T)S^{-1} = P_H f(N)|H, \quad \forall f \text{ rational with no poles on } X.$

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \widehat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$||f(T)||_{\mathcal{B}(H^s)} \leq K \max_{z \in X} ||f(z)||_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \ge 1$.

- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\widetilde{H} \supset H$ and $N \in \mathcal{B}(\widetilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

 $Sf(T)S^{-1} = P_H f(N)|H, \quad \forall f \text{ rational with no poles on } X$

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \widehat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$||f(T)||_{\mathcal{B}(H^s)} \leq K \max_{z \in X} ||f(z)||_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \ge 1$.

- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\widetilde{H} \supset H$ and $N \in \mathcal{B}(\widetilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

$$Sf(T)S^{-1} = P_H f(N)|H, \quad \forall f \text{ rational with no poles on } X.$$

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\bigcap \Omega_j$ is complete K-spectral for T if and only if $\overline{\Omega_j}$ is complete K_j -spectral for T. (Douglas, Paulsen, 1986).
- ② Let $D_1, ..., D_n$ be discs in $\widehat{\mathbb{C}}$. If $\overline{D_j}$ is (complete) 1-spectral for T, then $\overline{\bigcap D_j}$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).
- Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : ||x|| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

ⓐ Let *B* be a finite Blaschke product. If $\sigma(T) \subset \overline{\mathbb{D}}$ and $\overline{\mathbb{D}}$ is complete *K'*-spectral for *B(T)*, then $\overline{\mathbb{D}}$ is complete *K*-spectral for *T*. (Mascioni, 1994).

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\bigcap \Omega_j$ is complete K-spectral for T if and only if $\overline{\Omega_j}$ is complete K_j -spectral for T. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. If $\overline{D_j}$ is (complete) 1-spectral for T, then $\overline{\bigcap D_j}$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).
- Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : ||x|| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

Let B be a finite Blaschke product. If $\sigma(T)$ ⊂ $\overline{\mathbb{D}}$ and $\overline{\mathbb{D}}$ is complete K'-spectral for B(T), then $\overline{\mathbb{D}}$ is complete K-spectral for T. (Mascioni, 1994).

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\overline{\bigcap \Omega_j}$ is complete K-spectral for T if and only if $\overline{\Omega_j}$ is complete K_j -spectral for T. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. If $\overline{D_j}$ is (complete) 1-spectral for T, then $\overline{\bigcap D_j}$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).
- Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : ||x|| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

ⓐ Let *B* be a finite Blaschke product. If $\sigma(T) \subset \mathbb{D}$ and \mathbb{D} is complete *K'*-spectral for B(T), then $\overline{\mathbb{D}}$ is complete *K*-spectral for *T*. (Mascioni, 1994).

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\overline{\bigcap \Omega_j}$ is complete K-spectral for T if and only if $\overline{\Omega_j}$ is complete K_j -spectral for T. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. If $\overline{D_j}$ is (complete) 1-spectral for T, then $\overline{\bigcap D_j}$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).
- Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : ||x|| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

② Let *B* be a finite Blaschke product. If $\sigma(T) \subset \overline{\mathbb{D}}$ and $\overline{\mathbb{D}}$ is complete *K'*-spectral for *B(T)*, then $\overline{\mathbb{D}}$ is complete *K*-spectral for *T*. (*Mascioni*, 1994).

Some of our generalizations of these results

Theorem

Let $\Omega_1, \ldots, \Omega_s$ be Jordan domains with rectifiable and Ahlfors regular boundaries that intersect transversally. If $\overline{\Omega}_j$ is (complete) K_j -spectral for T, then $\bigcap \Omega_j$ is (complete) K-spectral for T.

Theorem

Let Ω be a Jordan domain with $C^{1,\alpha}$ boundary. If $\overline{\Omega}$ and $\mathbb{C}\setminus\overline{\Omega}$ are K-spectral for T, then $\partial\Omega$ is complete K'-spectral for T. Hence, T is similar to a normal operator with spectrum in $\partial\Omega$.

Theorem

Let Ω be a Jordan domain and R>0 such that for each $\lambda\in\Omega$ there is $\mu\in\mathbb{C}\setminus\overline{\Omega}$ such that $B(\mu,R)$ is tangent to $\partial\Omega$ at λ . If $\|(T-\mu I)^{-1}\|\leq R^{-1}$, then $\overline{\Omega}$ is complete K-spectral for some K>0.

If $\sigma(T) \subset \Gamma$ and $\|(T-zI)^{-1}\| \leq \operatorname{dist}(z,\Gamma)^{-1}$, then T is normal (Stampfli, 1969).

Some of our generalizations of these results

Theorem

Let $\Omega_1, \ldots, \Omega_s$ be Jordan domains with rectifiable and Ahlfors regular boundaries that intersect transversally. If $\overline{\Omega}_j$ is (complete) K_j -spectral for T, then $\bigcap \Omega_j$ is (complete) K-spectral for T.

Theorem

Let Ω be a Jordan domain with $C^{1,\alpha}$ boundary. If $\overline{\Omega}$ and $\mathbb{C}\setminus\overline{\Omega}$ are K-spectral for T, then $\partial\Omega$ is complete K'-spectral for T. Hence, T is similar to a normal operator with spectrum in $\partial\Omega$.

Theorem

Let Ω be a Jordan domain and R>0 such that for each $\lambda\in\Omega$ there is $\mu\in\mathbb{C}\setminus\overline{\Omega}$ such that $B(\mu,R)$ is tangent to $\partial\Omega$ at λ . If $\|(T-\mu I)^{-1}\|\leq R^{-1}$, then $\overline{\Omega}$ is complete K-spectral for some K>0.

If $\sigma(T) \subset \Gamma$ and $\|(T - zI)^{-1}\| \le \text{dist}(z, \Gamma)^{-1}$, then T is normal (Stampfli, 1969).

Test collections

Our main problem:

 $X\subset\widehat{\mathbb{C}}$ some set. We look for a collection Φ of functions analytic in X such that

$$\sigma(T) \subset X, \ \|\varphi(T)\| \le 1, \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T,$$
 (*)

or

$$\sigma(T) \subset X, \overline{\mathbb{D}}$$
 is complete K' -spectral for $\varphi(T), \forall \varphi \in \Phi \Rightarrow \overline{X}$ is complete K -spectral for T .

• Tipically, $X = \Omega$ an open domain, or $X = \overline{\Omega}$.

Definition

- Φ is a test collection in X if (*) holds.
- Φ is a strong test collection in X if (**) holds.

There are different types of test collections depending on whether K can depend on T or not.

Test collections

Our main problem:

 $X\subset\widehat{\mathbb{C}}$ some set. We look for a collection Φ of functions analytic in X such that

$$\sigma(T) \subset X, \ \|\varphi(T)\| \le 1, \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T,$$
 (*)

or

$$\sigma(T) \subset X, \overline{\mathbb{D}}$$
 is complete K' -spectral for $\varphi(T), \forall \varphi \in \Phi \Rightarrow \overline{X}$ is complete K -spectral for T .

• Tipically, $X = \Omega$ an open domain, or $X = \overline{\Omega}$.

Definition

- Φ is a test collection in X if (*) holds.
- Φ is a strong test collection in X if (**) holds.

There are different types of test collections depending on whether K can depend on T or not.

Test collections

Our main problem:

 $X\subset\widehat{\mathbb{C}}$ some set. We look for a collection Φ of functions analytic in X such that

$$\sigma(T) \subset X, \ \|\varphi(T)\| \le 1, \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T,$$
 (*)

or

$$\begin{split} \sigma(T) \subset X, \, \overline{\mathbb{D}} \text{ is complete } K'\text{-spectral for } \varphi(T), \forall \varphi \in \Phi \Rightarrow \\ \overline{X} \text{ is complete } K\text{-spectral for } T. \end{split} \tag{**}$$

• Tipically, $X = \Omega$ an open domain, or $X = \overline{\Omega}$.

Definition

- Φ is a test collection in X if (*) holds.
- Φ is a strong test collection in X if (**) holds.

There are different types of test collections depending on whether K can depend on T or not.

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\overline{\bigcap \Omega_k}$. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D} . Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. (Badea, Beckermann, Crouzeix, 2009).
- ① Let X be a compact convex set. Write $X = \bigcap H_{\alpha}$, with H_{α} closed half-planes. Let φ_{α} be a Möbius transformation taking H_{α} onto $\overline{\mathbb{D}}$. Then $\{\varphi_{\alpha}\}$ is a test collection in X. (Delyon, Delyon, 1999).
- If *B* is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (*Mascioni*, 1994).

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\overline{\bigcap \Omega_k}$. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D} . Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap \overline{D_k}$. (Badea, Beckermann, Crouzeix, 2009).
- ⓐ Let X be a compact convex set. Write $X = \bigcap H_{\alpha}$, with H_{α} closed half-planes. Let φ_{α} be a Möbius transformation taking H_{α} onto $\overline{\mathbb{D}}$. Then $\{\varphi_{\alpha}\}$ is a test collection in X. (Delyon, Delyon, 1999).
- ① If B is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (Mascioni, 1994).

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\overline{\bigcap \Omega_k}$. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D} . Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. (Badea, Beckermann, Crouzeix, 2009).
- **3** Let X be a compact convex set. Write $X = \bigcap H_{\alpha}$, with H_{α} closed half-planes. Let φ_{α} be a Möbius transformation taking H_{α} onto $\overline{\mathbb{D}}$. Then $\{\varphi_{\alpha}\}$ is a test collection in X. (Delyon, Delyon, 1999).
- If *B* is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (*Mascioni*, 1994).

- Let $\Omega_1, \ldots, \Omega_n \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\overline{\bigcap \Omega_k}$. (Douglas, Paulsen, 1986).
- ② Let D_1, \ldots, D_n be discs in $\widehat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D} . Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. (Badea, Beckermann, Crouzeix, 2009).
- **1** Let X be a compact convex set. Write $X = \bigcap H_{\alpha}$, with H_{α} closed half-planes. Let φ_{α} be a Möbius transformation taking H_{α} onto $\overline{\mathbb{D}}$. Then $\{\varphi_{\alpha}\}$ is a test collection in X. (Delyon, Delyon, 1999).
- If B is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (Mascioni, 1994).

Non-univalent test collections: Admissible domains and maps

Definition

- $\Omega \subset \mathbb{C}$ a domain such that $\partial \Omega$ is a disjoint finite union of piecewise analytic Jordan curves. We assume that the interior angles of the "corners" of $\partial \Omega$ are between 0 and π .
- $\{J_k\}_{k=1}^n$ closed analytic arcs intersecting each other at most in two points and such that $\partial\Omega=\bigcup J_k$.
- $\Phi = (\varphi_1, \dots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$ analytic in $\overline{\Omega}$ (can be weakened in many cases).
- $|\varphi_k| = 1$ in J_k .
- φ'_k does not vanish in J_k .
- $\varphi_k(\zeta) \neq \varphi_k(z)$ if $\zeta \in J_k$, $z \in \overline{\Omega}$, and $z \neq \zeta$.

A simple example of an admissible map

Example

 $\Omega_1, \dots, \Omega_n$ simply connected domains with analytic boundaries and such that their boundaries intersect transversally.

$$\Omega = \bigcap \Omega_k$$
, $J_k = \partial \Omega \cap \partial \Omega_k$.

 $\varphi_k:\overline{\Omega_k}\to\overline{\mathbb{D}}$ Riemann conformal mappings.

But φ_k need not be univalent in Ω in general.

A simple example of an admissible map

Example

 $\Omega_1, \dots, \Omega_n$ simply connected domains with analytic boundaries and such that their boundaries intersect transversally.

$$\Omega = \bigcap \Omega_k, \, J_k = \partial \Omega \cap \partial \Omega_k.$$

 $\varphi_k:\overline{\Omega_k}\to\overline{\mathbb{D}}$ Riemann conformal mappings.

But φ_k need not be univalent in Ω in general.

Our results about admissible maps

Theorem A

Let Ω be a simply connected domain, and $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depending on T). If moreover Φ is injective and Φ' does not vanish in Ω , then the test collection constant does not depend on T.

Theorem B

Let Ω be a not necessarily simply connected domain. If $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ is admissible and injective and Φ' does not vanish in Ω , then Φ is a strong test collection in Ω .

Summary

- Test collections and complete K-spectral sets
- Separation of singularities
- Generation of algebras
- Fitting everything together: idea of the proofs of the results about test functions

Havin-Nersesian-Ortega-Cerdà decomposition

Theorem (Havin–Nersessian–Ortega-Cerdà)

Let $\Omega_1, \ldots, \Omega_n$ be simply connected domains with transversally intersecting boundaries. Put $\Omega = \bigcap \Omega_k$. Then every $f \in H^{\infty}(\Omega)$ can be written as

$$f = f_1 + \cdots + f_n, \qquad f_k \in H^{\infty}(\Omega_k).$$

If $\varphi_k : \Omega_k \to \mathbb{D}$ is a Riemann map, then every $f \in H^{\infty}(\Omega)$ can be written as

$$f = g_1 \circ \varphi_1 + \cdots + g_n \circ \varphi_n, \qquad g_k \in H^{\infty}(\mathbb{D}).$$

(Just put $g_k = f_k \circ \varphi_k^{-1}$).

Havin-Nersesian-Ortega-Cerdà decomposition

Theorem (Havin–Nersessian–Ortega-Cerdà)

Let $\Omega_1, \ldots, \Omega_n$ be simply connected domains with transversally intersecting boundaries. Put $\Omega = \bigcap \Omega_k$. Then every $f \in H^\infty(\Omega)$ can be written as

$$f = f_1 + \cdots + f_n, \qquad f_k \in H^{\infty}(\Omega_k).$$

If $\varphi_k : \Omega_k \to \mathbb{D}$ is a Riemann map, then every $f \in H^{\infty}(\Omega)$ can be written as

$$f = g_1 \circ \varphi_1 + \cdots + g_n \circ \varphi_n, \qquad g_k \in H^{\infty}(\mathbb{D}).$$

(Just put $g_k = f_k \circ \varphi_k^{-1}$).

Separation of singularities with the composition

What can we do if $\varphi_k : \Omega \to \mathbb{D}$ are not univalent, but they still send J_k bijectively onto some arc of \mathbb{T} ?

Theorem

Let Ω and $\Phi = (\varphi_1, \dots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$ be admissible. Then there exist bounded linear operators $F_k : H^{\infty}(\Omega) \to H^{\infty}(\mathbb{D})$ such that the operator

$$f \mapsto f - \sum_{k=1}^{n} F_k(f) \circ \varphi_k$$

is compact in $H^{\infty}(\Omega)$ and its range is contained in $A(\overline{\Omega}) = \text{Hol}(\Omega) \cap \mathcal{C}(\overline{\Omega})$. Moreover, F_k map $A(\overline{\Omega})$ into $A(\overline{\mathbb{D}})$.

Separation of singularities with the composition

What can we do if $\varphi_k : \Omega \to \mathbb{D}$ are not univalent, but they still send J_k bijectively onto some arc of \mathbb{T} ?

Theorem

Let Ω and $\Phi = (\varphi_1, \dots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$ be admissible. Then there exist bounded linear operators $F_k : H^{\infty}(\Omega) \to H^{\infty}(\mathbb{D})$ such that the operator

$$f \mapsto f - \sum_{k=1}^n F_k(f) \circ \varphi_k$$

is compact in $H^{\infty}(\Omega)$ and its range is contained in $A(\overline{\Omega}) = \text{Hol}(\Omega) \cap \mathcal{C}(\overline{\Omega})$. Moreover, F_k map $A(\overline{\Omega})$ into $A(\overline{\mathbb{D}})$.

Summary

- Test collections and complete K-spectral sets
- Separation of singularities
- Generation of algebras
- Fitting everything together: idea of the proofs of the results about test functions

The algebras \mathcal{H}_{Φ} and \mathcal{A}_{Φ}

 Ω some domain, $\Phi = (\varphi_1, \dots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$.

$$\mathcal{H}_{\Phi} = \left\{ \sum_{j=1}^{l} f_{j,1}(\varphi_{1}(z)) f_{j,2}(\varphi_{2}(z)) \cdots f_{j,n}(\varphi_{n}(z)) : I \in \mathbb{N}, f_{j,k} \in H^{\infty}(\mathbb{D}) \right\}$$

$$\mathcal{A}_{\Phi} = \left\{ \sum_{j=1}^{l} f_{j,1}(\varphi_{1}(z)) f_{j,2}(\varphi_{2}(z)) \cdots f_{j,n}(\varphi_{n}(z)) : I \in \mathbb{N}, f_{j,k} \in A(\overline{\mathbb{D}}) \right\}$$

These are the (non-closed) subalgebras of $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ generated by functions of the form $f \circ \varphi_k$, with $f \in H^{\infty}(\mathbb{D})$ or $f \in A(\overline{\mathbb{D}})$.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_{\Phi} = H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = A(\overline{\Omega})$?
- What geometric conditions on Φ guarantee that \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ (respectively)?

The algebras \mathcal{H}_{Φ} and \mathcal{A}_{Φ}

 Ω some domain, $\Phi = (\varphi_1, \dots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$.

$$\mathcal{H}_{\Phi} = \left\{ \sum_{j=1}^{l} f_{j,1}(\varphi_{1}(z)) f_{j,2}(\varphi_{2}(z)) \cdots f_{j,n}(\varphi_{n}(z)) : l \in \mathbb{N}, f_{j,k} \in H^{\infty}(\mathbb{D}) \right\}$$

$$\mathcal{A}_{\Phi} = \left\{ \sum_{j=1}^{l} f_{j,1}(\varphi_{1}(z)) f_{j,2}(\varphi_{2}(z)) \cdots f_{j,n}(\varphi_{n}(z)) : l \in \mathbb{N}, f_{j,k} \in A(\overline{\mathbb{D}}) \right\}$$

These are the (non-closed) subalgebras of $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ generated by functions of the form $f \circ \varphi_k$, with $f \in H^{\infty}(\mathbb{D})$ or $f \in A(\overline{\mathbb{D}})$.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_{\Phi} = H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = A(\overline{\Omega})$?
- What geometric conditions on Φ guarantee that \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ (respectively)?

The algebras \mathcal{H}_{Φ} and \mathcal{A}_{Φ}

 Ω some domain, $\Phi = (\varphi_1, \dots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$.

$$\mathcal{H}_{\Phi} = \left\{ \sum_{j=1}^{l} f_{j,1}(\varphi_{1}(z)) f_{j,2}(\varphi_{2}(z)) \cdots f_{j,n}(\varphi_{n}(z)) : l \in \mathbb{N}, f_{j,k} \in H^{\infty}(\mathbb{D}) \right\}$$

$$\mathcal{A}_{\Phi} = \left\{ \sum_{j=1}^{l} f_{j,1}(\varphi_{1}(z)) f_{j,2}(\varphi_{2}(z)) \cdots f_{j,n}(\varphi_{n}(z)) : l \in \mathbb{N}, f_{j,k} \in A(\overline{\mathbb{D}}) \right\}$$

These are the (non-closed) subalgebras of $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ generated by functions of the form $f \circ \varphi_k$, with $f \in H^{\infty}(\mathbb{D})$ or $f \in A(\overline{\mathbb{D}})$.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_{\Phi} = \mathcal{H}^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = \mathcal{A}(\overline{\Omega})$?
- What geometric conditions on Φ guarantee that \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ (respectively)?

Finite codimension

Theorem

If Ω and Φ are admissible, then \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ respectively.

Proof

Put $Gf = \sum_{k=1}^n F_k(f) \circ \varphi_k$. Then $G: H^\infty(\Omega) \to H^\infty(\Omega)$ and G-I is compact. Hence, $GH^\infty(\Omega)$ is a closed subspace of finite codimension in $H^\infty(\Omega)$. Note that $GH^\infty(\Omega) \subset \mathcal{H}_\Phi$.

For A_{Φ} , use the restriction $G|A(\overline{\Omega})$.

Finite codimension

Theorem

If Ω and Φ are admissible, then \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\overline{\Omega})$ respectively.

Proof.

Put $Gf = \sum_{k=1}^n F_k(f) \circ \varphi_k$. Then $G : H^{\infty}(\Omega) \to H^{\infty}(\Omega)$ and G - I is compact. Hence, $GH^{\infty}(\Omega)$ is a closed subspace of finite codimension in $H^{\infty}(\Omega)$. Note that $GH^{\infty}(\Omega) \subset \mathcal{H}_{\Phi}$.

For \mathcal{A}_{Φ} , use the restriction $G|A(\overline{\Omega})$.

18 / 25

Equalities $\mathcal{H}_{\Phi} = \mathcal{H}^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = \mathcal{A}(\overline{\Omega})$

Theorem

If Ω and Φ are admissible, Φ is injective in $\overline{\Omega}$, and Φ' does not vanish in Ω , then $\mathcal{H}_{\Phi} = \mathcal{H}^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = \mathcal{A}(\overline{\Omega})$.

Note: It is easy to see that Φ being injective and Φ' not vanishing are necessary conditions for the equalities to hold.

The proof uses Banach algebra tools and the classification of the one-codimensional closed unital subalgebras of a unital Banach algebra (Gorin, 1969).

Equalities $\mathcal{H}_{\Phi} = \mathcal{H}^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = \mathcal{A}(\overline{\Omega})$

Theorem

If Ω and Φ are admissible, Φ is injective in $\overline{\Omega}$, and Φ' does not vanish in Ω , then $\mathcal{H}_{\Phi} = \mathcal{H}^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi} = \mathcal{A}(\overline{\Omega})$.

Note: It is easy to see that Φ being injective and Φ' not vanishing are necessary conditions for the equalities to hold.

The proof uses Banach algebra tools and the classification of the one-codimensional closed unital subalgebras of a unital Banach algebra (Gorin, 1969).

Algebras of functions in analytic curves

 $\mathcal{V} = \Phi(\Omega)$ is an analytic curve in the polydisc \mathbb{D}^n . We consider the algebras $H^{\infty}(\mathcal{V})$ and $A(\overline{\mathcal{V}})$.

Put $\Phi^* F = F \circ \Phi$.

Theorem

If Ω and Φ are admissible, then $\Phi^*H^\infty(\mathcal{V})=\mathcal{H}_\Phi$ and $\Phi^*A(\overline{\mathcal{V}})=\mathcal{A}_\Phi$.

The Agler algebra of \mathbb{D}^n

$$\|f\|_{\mathcal{SA}(\mathbb{D}^n)} = \sup_{\substack{\|T_j\| \leq 1\\ \sigma(T_j) \subset \mathbb{D}}} \|f(T_1, \dots, T_n)\|.$$

For every n, $SA(\mathbb{D}^n) \subset H^{\infty}(\mathbb{D}^n)$. For n = 1, 2, there is equality, but for $n \geq 3$, it is believed that the inclusion is proper.

Theorem

If Ω and Φ are admissible, then every $f \in H^{\infty}(\mathcal{V})$ can be extended to an $F \in \mathcal{SA}(\mathbb{D}^n)$ with $\|F\|_{\mathcal{SA}(\mathbb{D}^n)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

Algebras of functions in analytic curves

 $\mathcal{V} = \Phi(\Omega)$ is an analytic curve in the polydisc \mathbb{D}^n . We consider the algebras $H^{\infty}(\mathcal{V})$ and $A(\overline{\mathcal{V}})$.

Put $\Phi^* F = F \circ \Phi$.

Theorem

If Ω and Φ are admissible, then $\Phi^*H^\infty(\mathcal{V})=\mathcal{H}_\Phi$ and $\Phi^*A(\overline{\mathcal{V}})=\mathcal{A}_\Phi$.

The Agler algebra of \mathbb{D}^n :

$$||f||_{\mathcal{SA}(\mathbb{D}^n)} = \sup_{\substack{||T_j|| \leq 1 \ \sigma(T_j) \subset \mathbb{D}}} ||f(T_1, \dots, T_n)||.$$

For every n, $SA(\mathbb{D}^n) \subset H^{\infty}(\mathbb{D}^n)$. For n = 1, 2, there is equality, but for $n \geq 3$, it is believed that the inclusion is proper.

Theorem

If Ω and Φ are admissible, then every $f \in H^{\infty}(\mathcal{V})$ can be extended to an $F \in \mathcal{SA}(\mathbb{D}^n)$ with $\|F\|_{\mathcal{SA}(\mathbb{D}^n)} \leq C\|f\|_{H^{\infty}(\mathcal{V})}$.

Summary

- Test collections and complete K-spectral sets
- Separation of singularities
- Generation of algebras
- Fitting everything together: idea of the proofs of the results about test functions

Theorem B

If $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ is admissible and injective and Φ' does not vanish in Ω , then Φ is a strong test collection in Ω .

Take T with $\sigma(T) \subset \Omega$ and such that $\overline{\mathbb{D}}$ is complete K-spectral for $\varphi_k(T)$, and f a $s \times s$ -matrix–valued rational function with no poles in $\overline{\Omega}$. We must show that

$$||f(T)|| \leq C \max_{z \in \overline{\Omega}} ||f(z)||$$

We do the case s = 1.

Put $Gf = \sum F_k(f) \circ \varphi_k$. Since G - I is compact, there exist an operator P and an operator P with finite-dimensional range such that I = GR + P. We can write

$$f = \sum_{k=1}^{n} F_k(Rf) \circ \varphi_k + \sum_{j=1}^{r} \alpha_j(f)g_j,$$

where $\alpha_j \in (A(\overline{\Omega}))^*$ and $g_j \in A(\overline{\Omega}) = A_{\Phi}$.

$$\|g_j(T)\| = \left\|\sum_{t=1}^{J} f_{j,t,1}(\varphi_1(T)) \cdots f_{j,t,n}(\varphi_n(T))\right\| \leq \sum_{t=1}^{J} K^n \|f_{j,t,1}\|_{\infty} \cdots \|f_{j,t,n}\|_{\infty} \leq C.$$

Theorem B

If $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ is admissible and injective and Φ' does not vanish in Ω , then Φ is a strong test collection in Ω .

Take T with $\sigma(T) \subset \Omega$ and such that $\overline{\mathbb{D}}$ is complete K-spectral for $\varphi_k(T)$, and f a $s \times s$ -matrix–valued rational function with no poles in $\overline{\Omega}$. We must show that

$$||f(T)|| \leq C \max_{z \in \overline{\Omega}} ||f(z)||.$$

We do the case s=1.

Put $Gf = \sum F_k(f) \circ \varphi_k$. Since G - I is compact, there exist an operator P and an operator P with finite-dimensional range such that I = GR + P. We can write

$$f = \sum_{k=1}^{n} F_k(Rf) \circ \varphi_k + \sum_{j=1}^{r} \alpha_j(f)g_j,$$

where $\alpha_j \in (A(\Omega))^*$ and $g_j \in A(\Omega) = A_{\Phi}$.

$$||g_j(T)|| = \left\| \sum_{t=1}^{J} f_{j,t,1}(\varphi_1(T)) \cdots f_{j,t,n}(\varphi_n(T)) \right\| \leq \sum_{t=1}^{J} K^n ||f_{j,t,1}||_{\infty} \cdots ||f_{j,t,n}||_{\infty} \leq C.$$

Theorem B

If $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ is admissible and injective and Φ' does not vanish in Ω , then Φ is a strong test collection in Ω .

Take T with $\sigma(T) \subset \Omega$ and such that $\overline{\mathbb{D}}$ is complete K-spectral for $\varphi_k(T)$, and f a $s \times s$ -matrix–valued rational function with no poles in $\overline{\Omega}$. We must show that

$$||f(T)|| \leq C \max_{z \in \overline{\Omega}} ||f(z)||.$$

We do the case s = 1.

Put $Gf = \sum F_k(f) \circ \varphi_k$. Since G - I is compact, there exist an operator P and an operator P with finite-dimensional range such that I = GR + P. We can write

$$f = \sum_{k=1}^{n} F_k(Rf) \circ \varphi_k + \sum_{j=1}^{r} \alpha_j(f)g_j,$$

where $\alpha_j \in (A(\overline{\Omega}))^*$ and $g_j \in A(\overline{\Omega}) = A_{\Phi}$.

$$\|g_{j}(T)\| = \left\| \sum_{t=1}^{l} f_{j,t,1}(\varphi_{1}(T)) \cdots f_{j,t,n}(\varphi_{n}(T)) \right\| \leq \sum_{t=1}^{l} K^{n} \|f_{j,t,1}\|_{\infty} \cdots \|f_{j,t,n}\|_{\infty} \leq C.$$

$$||f(T)|| \leq \sum_{k=1}^{n} ||F_k(Rf)(\varphi_k(T))|| + \sum_{j=1}^{r} |\alpha_j(f)|||g_j(T)|| \leq C||f||_{\infty}.$$

The case $s \ge 2$ is the same. We have to use that an operator whose range is contained in a commutative C^* -algebra is automatically completely bounded. This means that the bounds that we have obtained before are uniform in s.

The case when $\sigma(T) \cap \partial\Omega \neq \emptyset$

Theorem A

Let Ω be a simply connected domain, $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depeding on T). If morever, Φ is injective and Φ' does not vanish in Ω , then the test collection constant does not depend on T.

Here $\sigma(T)$ can intersect $\partial\Omega$. We cannot use the previous argument.

Idea: To use a *shrinking* of Ω .

- $\{\psi_{\varepsilon}\}_{0\leq \varepsilon\leq \varepsilon_0}$ analytic and univalent functions on some open $U\supset \overline{\Omega}$.
- $\psi_0 \equiv z$.
- $\psi_{\varepsilon}(\overline{\Omega}) \subset \Omega$ for $\varepsilon > 0$.
- $\varepsilon \mapsto \psi_{\varepsilon}$ is continuous in the topology of uniform convergence on compact subsets of U.

To construct the shrinking we need that Ω is simply connected.

- Pass to operators $T_{\varepsilon} = \psi_{\varepsilon}(T)$.
- $\sigma(T_{\varepsilon}) \subset \Omega$.
- $T_{\varepsilon} \to T$ in operator norm.

The case when $\sigma(T) \cap \partial\Omega \neq \emptyset$

Theorem A

Let Ω be a simply connected domain, $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depeding on T). If morever, Φ is injective and Φ' does not vanish in Ω , then the test collection constant does not depend on T.

Here $\sigma(T)$ can intersect $\partial\Omega$. We cannot use the previous argument. Idea: To use a *shrinking* of Ω .

- $\{\psi_{\varepsilon}\}_{0\leq \varepsilon\leq \varepsilon_0}$ analytic and univalent functions on some open $U\supset \overline{\Omega}.$
- $\psi_0 \equiv z$.
- $\psi_{\varepsilon}(\overline{\Omega}) \subset \Omega$ for $\varepsilon > 0$.
- $\varepsilon \mapsto \psi_{\varepsilon}$ is continuous in the topology of uniform convergence on compact subsets of U.

To construct the shrinking we need that Ω is simply connected.

- Pass to operators $T_{\varepsilon} = \psi_{\varepsilon}(T)$.
- $\sigma(T_{\varepsilon}) \subset \Omega$.
- $T_{\varepsilon} \to T$ in operator norm.

The case when $\sigma(T) \cap \partial\Omega \neq \emptyset$

Theorem A

Let Ω be a simply connected domain, $\Phi:\overline{\Omega}\to\overline{\mathbb{D}}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depeding on T). If morever, Φ is injective and Φ' does not vanish in Ω , then the test collection constant does not depend on T.

Here $\sigma(T)$ can intersect $\partial\Omega$. We cannot use the previous argument. Idea: To use a *shrinking* of Ω .

- $\{\psi_{\varepsilon}\}_{0\leq \varepsilon\leq \varepsilon_0}$ analytic and univalent functions on some open $U\supset \overline{\Omega}$.
- $\psi_0 \equiv z$.
- $\psi_{\varepsilon}(\overline{\Omega}) \subset \Omega$ for $\varepsilon > 0$.
- $\varepsilon \mapsto \psi_{\varepsilon}$ is continuous in the topology of uniform convergence on compact subsets of U.

To construct the shrinking we need that Ω is simply connected.

- Pass to operators $T_{\varepsilon} = \psi_{\varepsilon}(T)$.
- $\sigma(T_{\varepsilon}) \subset \Omega$.
- $T_{\varepsilon} \to T$ in operator norm.

Thank you!