Separation of singularities, generation of algebras and complete K-spectral sets

Daniel Estévez

Universidad Autónoma de Madrid

Joint work with Michael Dritschel (Newcastle Univ.) and Dmitry Yakubovich (UAM)

IWOTA 2015
7th July 2015
Summary

1. Test collections and complete K-spectral sets
2. Separation of singularities
3. Generation of algebras
4. Fitting everything together: idea of the proofs of the results about test functions
Summary

1. Test collections and complete K-spectral sets
2. Separation of singularities
3. Generation of algebras
4. Fitting everything together: idea of the proofs of the results about test functions
If T is a contraction on a Hilbert space H (i.e., $\|T\| \leq 1$), then

$$\|p(T)\| \leq \max_{z \in \mathbb{D}} |p(z)|,$$

for every polynomial p.

In fact,

$$\|f(T)\|_{\mathcal{B}(H^s)} \leq \max_{z \in \mathbb{D}} \|f(z)\|,$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \geq 1$.

Here, $f(T) = [f_{jk}(T)]_{j,k=1}^s$.
Von Neumann’s inequality

If T is a contraction on a Hilbert space H (i.e., $\|T\| \leq 1$), then

$$\|p(T)\| \leq \max_{z \in \mathbb{D}} |p(z)|,$$

for every polynomial p.

In fact,

$$\|f(T)\|_{\mathcal{B}(H^s)} \leq \max_{z \in \mathbb{D}} \|f(z)\|,$$

for every rational function $f = \left[f_{jk}\right]_{j,k=1}^{s}$ with values on $s \times s$ matrices and no poles in X, and every $s \geq 1$.

Here, $f(T) = \left[f_{jk}(T)\right]_{j,k=1}^{s}$.
Complete K-spectral sets

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \hat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$\| f(T) \|_{\mathcal{B}(H^s)} \leq K \max_{z \in X} \| f(z) \|_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \geq 1$.

- T is a contraction if and only if \mathbb{D} is a complete 1-spectral set (von Neumann's inequality).
- T is similar to a contraction ($T = SAS^{-1}$, $\|A\| \leq 1$) if and only if \mathbb{D} is a complete K-spectral set for some K.
- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\tilde{H} \supset H$ and $N \in \mathcal{B}(\tilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

$$Sf(T)S^{-1} = P_H f(N)|H, \quad \forall f \text{ rational with no poles on } X.$$
Complete K-spectral sets

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \mathbb{C}$ a compact set. X is a complete K-spectral set for T if

$$\|f(T)\|_{\mathcal{B}(H^s)} \leq K \max_{z \in X} \|f(z)\|_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^{s}$ with values on $s \times s$ matrices and no poles in X, and every $s \geq 1$.

- T is a contraction if and only if \overline{D} is a complete 1-spectral set (von Neumann’s inequality).
- T is similar to a contraction ($T = SAS^{-1}$, $\|A\| \leq 1$) if and only if \overline{D} is a complete K-spectral set for some K.
- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\tilde{H} \supset H$ and $N \in \mathcal{B}(\tilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

$$Sf(T)S^{-1} = P_H f(N)|H, \quad \forall f \text{ rational with no poles on } X.$$
Complete K-spectral sets

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \hat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$\|f(T)\|_{\mathcal{B}(H^s)} \leq K \max_{z \in X} \|f(z)\|_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \geq 1$.

- T is a contraction if and only if \overline{D} is a complete 1-spectral set (von Neumann’s inequality).
- T is similar to a contraction ($T = SAS^{-1}$, $\|A\| \leq 1$) if and only if \overline{D} is a complete K-spectral set for some K.
- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\tilde{H} \supset H$ and $N \in \mathcal{B}(\tilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

$$Sf(T)S^{-1} = P_H f(N)|_H, \quad \forall f \text{ rational with no poles on } X.$$
Complete K-spectral sets

Definition

H a Hilbert space, $T \in \mathcal{B}(H)$ a bounded operator, $X \subset \hat{\mathbb{C}}$ a compact set. X is a complete K-spectral set for T if

$$\|f(T)\|_{\mathcal{B}(H^s)} \leq K \max_{z \in X} \|f(z)\|_{\mathcal{B}(\mathbb{C}^s)},$$

for every rational function $f = [f_{jk}]_{j,k=1}^s$ with values on $s \times s$ matrices and no poles in X, and every $s \geq 1$.

- T is a contraction if and only if \overline{D} is a complete 1-spectral set (von Neumann’s inequality).
- T is similar to a contraction ($T = SAS^{-1}$, $\|A\| \leq 1$) if and only if \overline{D} is a complete K-spectral set for some K.
- T is similar to an operator having a rational normal dilation to ∂X if and only if X is a complete K-spectral set for some K. This means that there is $\tilde{H} \supset H$ and $N \in \mathcal{B}(\tilde{H})$ normal with $\sigma(N) \subset \partial X$ such that

$$Sf(T)S^{-1} = P_Hf(N)|_H, \quad \forall f \text{ rational with no poles on } X.$$
Some results about complete K-spectral sets

1. Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\bigcap \Omega_j$ is complete K-spectral for T if and only if $\overline{\Omega_j}$ is complete K_j-spectral for T. (Douglas, Paulsen, 1986).

2. Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. If $\overline{D_j}$ is (complete) 1-spectral for T, then $\bigcap D_j$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).

3. Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : \|x\| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

4. Let B be a finite Blaschke product. If $\sigma(T) \subset \overline{D}$ and \overline{D} is complete K'-spectral for $B(T)$, then \overline{D} is complete K-spectral for T. (Mascioni, 1994).
Some results about complete K-spectral sets

1. Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\bigcap \Omega_j$ is complete K-spectral for T if and only if $\overline{\Omega}_j$ is complete K_j-spectral for T. (Douglas, Paulsen, 1986).

2. Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. If D_j is (complete) 1-spectral for T, then $\bigcap D_j$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).

3. Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : \|x\| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

4. Let B be a finite Blaschke product. If $\sigma(T) \subset \overline{\mathbb{D}}$ and $\overline{\mathbb{D}}$ is complete K'-spectral for $B(T)$, then $\overline{\mathbb{D}}$ is complete K-spectral for T. (Mascioni, 1994).
Some results about complete K-spectral sets

1. Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\bigcap \Omega_j$ is complete K-spectral for T if and only if $\bar{\Omega}_j$ is complete K_j-spectral for T. (Douglas, Paulsen, 1986).

2. Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. If D_j is (complete) 1-spectral for T, then $\bigcap D_j$ is complete K-spectral for T. (Badea, Beckermann, Crouzeix, 2009).

3. Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : \|x\| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. (Delyon, Delyon, 1999).

4. Let B be a finite Blaschke product. If $\sigma(T) \subset \overline{\mathbb{D}}$ and $\overline{\mathbb{D}}$ is complete K'-spectral for $B(T)$, then $\overline{\mathbb{D}}$ is complete K-spectral for T. (Mascioni, 1994).
Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Then $\bigcap \Omega_j$ is complete K-spectral for T if and only if $\overline{\Omega_j}$ is complete K_j-spectral for T. \textit{(Douglas, Paulsen, 1986)}.

Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. If D_j is (complete) 1-spectral for T, then $\bigcap D_j$ is complete K-spectral for T. \textit{(Badea, Beckermann, Crouzeix, 2009)}.

Let X be a compact convex set. If the numerical range of T

$$W(T) = \{ \langle Tx, x \rangle : \|x\| = 1 \}$$

is contained in X, then X is a complete K-spectral set for T. \textit{(Delyon, Delyon, 1999)}.

Let B be a finite Blaschke product. If $\sigma(T) \subset \overline{D}$ and \overline{D} is complete K'-spectral for $B(T)$, then \overline{D} is complete K-spectral for T. \textit{(Mascioni, 1994)}.
Some of our generalizations of these results

Theorem

Let $\Omega_1, \ldots, \Omega_s$ be Jordan domains with rectifiable and Ahlfors regular boundaries that intersect transversally. If $\overline{\Omega}_j$ is (complete) K_j-spectral for T, then $\bigcap \overline{\Omega}_j$ is (complete) K-spectral for T.

Theorem

Let Ω be a Jordan domain with $C^{1,\alpha}$ boundary. If $\overline{\Omega}$ and $\mathbb{C} \setminus \overline{\Omega}$ are K-spectral for T, then $\partial \Omega$ is complete K'-spectral for T. Hence, T is similar to a normal operator with spectrum in $\partial \Omega$.

Theorem

Let Ω be a Jordan domain and $R > 0$ such that for each $\lambda \in \Omega$ there is $\mu \in \mathbb{C} \setminus \overline{\Omega}$ such that $B(\mu, R)$ is tangent to $\partial \Omega$ at λ. If $\| (T - \mu I)^{-1} \| \leq R^{-1}$, then $\overline{\Omega}$ is complete K-spectral for some $K > 0$.

If $\sigma(T) \subset \Gamma$ and $\| (T - z I)^{-1} \| \leq \text{dist}(z, \Gamma)^{-1}$, then T is normal (Stampfli, 1969).
Some of our generalizations of these results

Theorem

Let $\Omega_1, \ldots, \Omega_s$ be Jordan domains with rectifiable and Ahlfors regular boundaries that intersect transversally. If $\overline{\Omega_j}$ is (complete) K_j-spectral for T, then $\bigcap \overline{\Omega_j}$ is (complete) K-spectral for T.

Theorem

Let Ω be a Jordan domain with $C^{1,\alpha}$ boundary. If $\overline{\Omega}$ and $\mathbb{C} \setminus \overline{\Omega}$ are K-spectral for T, then $\partial \Omega$ is complete K'-spectral for T. Hence, T is similar to a normal operator with spectrum in $\partial \Omega$.

Theorem

Let Ω be a Jordan domain and $R > 0$ such that for each $\lambda \in \Omega$ there is $\mu \in \mathbb{C} \setminus \overline{\Omega}$ such that $B(\mu, R)$ is tangent to $\partial \Omega$ at λ. If $\|(T - \mu I)^{-1}\| \leq R^{-1}$, then $\overline{\Omega}$ is complete K-spectral for some $K > 0$.

If $\sigma(T) \subset \Gamma$ and $\|(T - zI)^{-1}\| \leq \text{dist}(z, \Gamma)^{-1}$, then T is normal (Stampfli, 1969).
Our main problem:

\[X \subset \hat{\mathbb{C}} \text{ some set. We look for a collection } \Phi \text{ of functions analytic in } X \text{ such that } \]

\[\sigma(T) \subset X, \|\varphi(T)\| \leq 1, \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T, \quad (*) \]

or

\[\sigma(T) \subset X, \overline{D} \text{ is complete } K'^{-}\text{spectral for } \varphi(T), \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T. \quad (**) \]

- Typically, \(X = \Omega \) an open domain, or \(X = \overline{\Omega} \).

Definition

- \(\Phi \) is a test collection in \(X \) if \((*) \) holds.
- \(\Phi \) is a strong test collection in \(X \) if \((**) \) holds.

There are different types of test collections depending on whether \(K \) can depend on \(T \) or not.
Test collections

Our main problem:

$X \subset \hat{\mathbb{C}}$ some set. We look for a collection Φ of functions analytic in X such that

$$\sigma(T) \subset X, \|\varphi(T)\| \leq 1, \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T,$$

or

$$\sigma(T) \subset X, \overline{D} \text{ is complete } K'\text{-spectral for } \varphi(T), \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T. \quad (\star\star)$$

- Typically, $X = \Omega$ an open domain, or $X = \Omega$.

Definition

- Φ is a test collection in X if (\star) holds.
- Φ is a strong test collection in X if $(\star\star)$ holds.

There are different types of test collections depending on whether K can depend on T or not.
Test collections

Our main problem:

\(X \subset \widehat{\mathbb{C}} \) some set. We look for a collection \(\Phi \) of functions analytic in \(X \) such that

\[
\sigma(T) \subset X, \quad \|\varphi(T)\| \leq 1, \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T, \tag{*}
\]

or

\[
\sigma(T) \subset X, \quad \overline{D} \text{ is complete } K'\text{-spectral for } \varphi(T), \forall \varphi \in \Phi \Rightarrow \overline{X} \text{ is complete } K\text{-spectral for } T. \tag{**}
\]

- Typically, \(X = \Omega \) an open domain, or \(X = \overline{\Omega} \).

Definition

- \(\Phi \) is a test collection in \(X \) if \((*)\) holds.
- \(\Phi \) is a strong test collection in \(X \) if \((**)\) holds.

There are different types of test collections depending on whether \(K \) can depend on \(T \) or not.
Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\bigcap \Omega_k$. \textit{(Douglas, Paulsen, 1986)}.

Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D}. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. \textit{(Badea, Beckermann, Crouzeix, 2009)}.

Let X be a compact convex set. Write $X = \bigcap H_\alpha$, with H_α closed half-planes. Let φ_α be a Möbius transformation taking H_α onto $\overline{\mathbb{D}}$. Then $\{\varphi_\alpha\}$ is a test collection in X. \textit{(Delyon, Delyon, 1999)}.

If B is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. \textit{(Mascioni, 1994)}.
1. Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\bigcap \Omega_k$. (Douglas, Paulsen, 1986).

2. Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D}. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. (Badea, Beckermann, Crouzeix, 2009).

3. Let X be a compact convex set. Write $X = \bigcap H_\alpha$, with H_α closed half-planes. Let φ_α be a Möbius transformation taking H_α onto $\overline{\mathbb{D}}$. Then $\{\varphi_\alpha\}$ is a test collection in X. (Delyon, Delyon, 1999).

4. If B is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (Mascioni, 1994).
Previous results restated in the language of test collections

1. Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\bigcap \Omega_k$. (Douglas, Paulsen, 1986).

2. Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D}. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. (Badea, Beckermann, Crouzeix, 2009).

3. Let X be a compact convex set. Write $X = \bigcap H_\alpha$, with H_α closed half-planes. Let φ_α be a Möbius transformation taking H_α onto $\overline{\mathbb{D}}$. Then $\{\varphi_\alpha\}$ is a test collection in X. (Delyon, Delyon, 1999).

4. If B is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (Mascioni, 1994).
Let $\Omega_1, \ldots, \Omega_n \subset \hat{\mathbb{C}}$ be simply connected domains with analytic boundaries and such that their boundaries do not intersect. Let $\varphi_k : \overline{\Omega_k} \to \overline{\mathbb{D}}$ be Riemann conformal mappings. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a strong test collection in $\bigcap \Omega_k$. (Douglas, Paulsen, 1986).

Let D_1, \ldots, D_n be discs in $\hat{\mathbb{C}}$. Let φ_k be a Möbius transformation taking D_k onto \mathbb{D}. Then $\{\varphi_1, \ldots, \varphi_n\}$ is a test collection in $\bigcap D_k$. (Badea, Beckermann, Crouzeix, 2009).

Let X be a compact convex set. Write $X = \bigcap H_\alpha$, with H_α closed half-planes. Let φ_α be a Möbius transformation taking H_α onto $\overline{\mathbb{D}}$. Then $\{\varphi_\alpha\}$ is a test collection in X. (Delyon, Delyon, 1999).

If B is a finite Blaschke product, the set $\{B\}$ is a strong test collection in $\overline{\mathbb{D}}$. (Mascioni, 1994).
Definition

- $\Omega \subset \mathbb{C}$ a domain such that $\partial \Omega$ is a disjoint finite union of piecewise analytic Jordan curves. We assume that the interior angles of the “corners” of $\partial \Omega$ are between 0 and π.

- $\{J_k\}_{k=1}^n$ closed analytic arcs intersecting each other at most in two points and such that $\partial \Omega = \bigcup J_k$.

- $\Phi = (\varphi_1, \ldots, \varphi_n) : \overline{\Omega} \rightarrow \mathbb{D}^n$ analytic in $\overline{\Omega}$ (can be weakened in many cases).

- $|\varphi_k| = 1$ in J_k.

- φ'_k does not vanish in J_k.

- $\varphi_k(\zeta) \neq \varphi_k(z)$ if $\zeta \in J_k$, $z \in \overline{\Omega}$, and $z \neq \zeta$.
A simple example of an admissible map

Example

$\Omega_1, \ldots, \Omega_n$ simply connected domains with analytic boundaries and such that their boundaries intersect transversally.

$\Omega = \bigcap \Omega_k$, $J_k = \partial \Omega \cap \partial \Omega_k$.

$\varphi_k : \overline{\Omega}_k \rightarrow \overline{D}$ Riemann conformal mappings.

But φ_k need not be univalent in Ω in general.
A simple example of an admissible map

Example

$\Omega_1, \ldots, \Omega_n$ simply connected domains with analytic boundaries and such that their boundaries intersect transversally.

$\Omega = \bigcap \Omega_k$, $J_k = \partial \Omega \cap \partial \Omega_k$.

$\varphi_k : \overline{\Omega_k} \to \overline{D}$ Riemann conformal mappings.

But φ_k need not be univalent in Ω in general.
Our results about admissible maps

Theorem A

Let Ω be a simply connected domain, and $\Phi : \overline{\Omega} \to \mathbb{D}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depending on T). If moreover Φ is injective and Φ' does not vanish in Ω, then the test collection constant does not depend on T.

Theorem B

Let Ω be a not necessarily simply connected domain. If $\Phi : \overline{\Omega} \to \mathbb{D}^n$ is admissible and injective and Φ' does not vanish in Ω, then Φ is a strong test collection in Ω.
Summary

1. Test collections and complete K-spectral sets

2. Separation of singularities

3. Generation of algebras

4. Fitting everything together: idea of the proofs of the results about test functions
Let \(\Omega_1, \ldots, \Omega_n \) be simply connected domains with transversally intersecting boundaries. Put \(\Omega = \bigcap \Omega_k \). Then every \(f \in H^\infty(\Omega) \) can be written as

\[
f = f_1 + \cdots + f_n, \quad f_k \in H^\infty(\Omega_k).
\]

If \(\varphi_k : \Omega_k \to \mathbb{D} \) is a Riemann map, then every \(f \in H^\infty(\Omega) \) can be written as

\[
f = g_1 \circ \varphi_1 + \cdots + g_n \circ \varphi_n, \quad g_k \in H^\infty(\mathbb{D}).
\]

(Just put \(g_k = f_k \circ \varphi_k^{-1} \).)

Daniel Estévez (UAM)
Theorem (Havin–Nersessian–Ortega-Cerdà)

Let $\Omega_1, \ldots, \Omega_n$ be simply connected domains with transversally intersecting boundaries. Put $\Omega = \bigcap \Omega_k$. Then every $f \in H^\infty(\Omega)$ can be written as

$$f = f_1 + \cdots + f_n, \quad f_k \in H^\infty(\Omega_k).$$

If $\varphi_k : \Omega_k \to \mathbb{D}$ is a Riemann map, then every $f \in H^\infty(\Omega)$ can be written as

$$f = g_1 \circ \varphi_1 + \cdots + g_n \circ \varphi_n, \quad g_k \in H^\infty(\mathbb{D}).$$

(Just put $g_k = f_k \circ \varphi_k^{-1}$).
What can we do if $\varphi_k : \Omega \to \mathbb{D}$ are not univalent, but they still send J_k bijectively onto some arc of \mathbb{T}?

Theorem

Let Ω and $\Phi = (\varphi_1, \ldots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$ be admissible. Then there exist bounded linear operators $F_k : H^\infty(\Omega) \to H^\infty(\mathbb{D})$ such that the operator

$$f \mapsto f - \sum_{k=1}^{n} F_k(f) \circ \varphi_k$$

is compact in $H^\infty(\Omega)$ and its range is contained in $A(\overline{\Omega}) = \text{Hol}(\Omega) \cap C(\overline{\Omega})$. Moreover, F_k map $A(\overline{\Omega})$ into $A(\overline{\mathbb{D}})$.

Daniel Estévez (UAM)

Separation of singularities and K-spectral sets

IWOTA 2015 15 / 25
What can we do if $\varphi_k : \Omega \to \mathbb{D}$ are not univalent, but they still send J_k bijectively onto some arc of \mathbb{T}?

Theorem

Let Ω and $\Phi = (\varphi_1, \ldots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$ be admissible. Then there exist bounded linear operators $F_k : H^\infty(\Omega) \to H^\infty(\mathbb{D})$ such that the operator

$$f \mapsto f - \sum_{k=1}^n F_k(f) \circ \varphi_k$$

is compact in $H^\infty(\Omega)$ and its range is contained in $A(\overline{\Omega}) = \text{Hol}(\Omega) \cap C(\overline{\Omega})$. Moreover, F_k map $A(\overline{\Omega})$ into $A(\overline{\mathbb{D}})$.

Summary

1. Test collections and complete K-spectral sets

2. Separation of singularities

3. Generation of algebras

4. Fitting everything together: idea of the proofs of the results about test functions
The algebras \mathcal{H}_Φ and A_Φ

Ω some domain, $\Phi = (\varphi_1, \ldots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$.

$$\mathcal{H}_\Phi = \left\{ \sum_{j=1}^l f_{j,1}(\varphi_1(z)) f_{j,2}(\varphi_2(z)) \cdots f_{j,n}(\varphi_n(z)) : l \in \mathbb{N}, f_{j,k} \in H^\infty(\mathbb{D}) \right\}$$

$$A_\Phi = \left\{ \sum_{j=1}^l f_{j,1}(\varphi_1(z)) f_{j,2}(\varphi_2(z)) \cdots f_{j,n}(\varphi_n(z)) : l \in \mathbb{N}, f_{j,k} \in A(\overline{\mathbb{D}}) \right\}$$

These are the (non-closed) subalgebras of $H^\infty(\Omega)$ and $A(\overline{\Omega})$ generated by functions of the form $f \circ \varphi_k$, with $f \in H^\infty(\mathbb{D})$ or $f \in A(\overline{\mathbb{D}})$.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $A_\Phi = A(\overline{\Omega})$?
- What geometric conditions on Φ guarantee that \mathcal{H}_Φ and A_Φ are closed subalgebras of finite codimension in $H^\infty(\Omega)$ and $A(\overline{\Omega})$ (respectively)?
The algebras \mathcal{H}_Φ and A_Φ

Ω some domain, $\Phi = (\varphi_1, \ldots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$.

$$\mathcal{H}_\Phi = \left\{ \sum_{j=1}^l f_{j,1}(\varphi_1(z))f_{j,2}(\varphi_2(z)) \cdots f_{j,n}(\varphi_n(z)) : l \in \mathbb{N}, f_{j,k} \in H^\infty(\mathbb{D}) \right\}$$

$$A_\Phi = \left\{ \sum_{j=1}^l f_{j,1}(\varphi_1(z))f_{j,2}(\varphi_2(z)) \cdots f_{j,n}(\varphi_n(z)) : l \in \mathbb{N}, f_{j,k} \in A(\overline{\mathbb{D}}) \right\}$$

These are the (non-closed) subalgebras of $H^\infty(\Omega)$ and $A(\overline{\Omega})$ generated by functions of the form $f \circ \varphi_k$, with $f \in H^\infty(\mathbb{D})$ or $f \in A(\overline{\mathbb{D}})$.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $A_\Phi = A(\overline{\Omega})$?

- What geometric conditions on Φ guarantee that \mathcal{H}_Φ and A_Φ are closed subalgebras of finite codimension in $H^\infty(\Omega)$ and $A(\overline{\Omega})$ (respectively)?
The algebras \mathcal{H}_Φ and \mathcal{A}_Φ

Ω some domain, $\Phi = (\varphi_1, \ldots, \varphi_n) : \overline{\Omega} \to \overline{\mathbb{D}}^n$.

$$\mathcal{H}_\Phi = \left\{ \sum_{j=1}^l f_{j,1}(\varphi_1(z))f_{j,2}(\varphi_2(z)) \cdots f_{j,n}(\varphi_n(z)) : l \in \mathbb{N}, f_{j,k} \in H^\infty(\mathbb{D}) \right\}$$

$$\mathcal{A}_\Phi = \left\{ \sum_{j=1}^l f_{j,1}(\varphi_1(z))f_{j,2}(\varphi_2(z)) \cdots f_{j,n}(\varphi_n(z)) : l \in \mathbb{N}, f_{j,k} \in A(\overline{\mathbb{D}}) \right\}$$

These are the (non-closed) subalgebras of $H^\infty(\Omega)$ and $A(\overline{\Omega})$ generated by functions of the form $f \circ \varphi_k$, with $f \in H^\infty(\mathbb{D})$ or $f \in A(\overline{\mathbb{D}})$.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $\mathcal{A}_\Phi = A(\overline{\Omega})$?
- What geometric conditions on Φ guarantee that \mathcal{H}_Φ and \mathcal{A}_Φ are closed subalgebras of finite codimension in $H^\infty(\Omega)$ and $A(\overline{\Omega})$ (respectively)?
If Ω and Φ are admissible, then \mathcal{H}_Φ and A_Φ are closed subalgebras of finite codimension in $H^\infty(\Omega)$ and $A(\overline{\Omega})$ respectively.

Proof.

Put $Gf = \sum_{k=1}^{n} F_k(f) \circ \varphi_k$. Then $G : H^\infty(\Omega) \to H^\infty(\Omega)$ and $G - I$ is compact. Hence, $GH^\infty(\Omega)$ is a closed subspace of finite codimension in $H^\infty(\Omega)$. Note that $GH^\infty(\Omega) \subset \mathcal{H}_\Phi$.

For A_Φ, use the restriction $G|A(\overline{\Omega})$.
Theorem

If Ω and Φ are admissible, then \mathcal{H}_Φ and A_Φ are closed subalgebras of finite codimension in $H^\infty(\Omega)$ and $A(\overline{\Omega})$ respectively.

Proof.

Put $Gf = \sum_{k=1}^{n} F_k(f) \circ \varphi_k$. Then $G : H^\infty(\Omega) \to H^\infty(\Omega)$ and $G - I$ is compact. Hence, $GH^\infty(\Omega)$ is a closed subspace of finite codimension in $H^\infty(\Omega)$. Note that $GH^\infty(\Omega) \subset \mathcal{H}_\Phi$.

For A_Φ, use the restriction $G|A(\overline{\Omega})$.
Equalities $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $A_\Phi = A(\overline{\Omega})$

Theorem

If Ω and Φ are admissible, Φ is injective in $\overline{\Omega}$, and Φ' does not vanish in Ω, then $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $A_\Phi = A(\overline{\Omega})$.

Note: It is easy to see that Φ being injective and Φ' not vanishing are necessary conditions for the equalities to hold.

The proof uses Banach algebra tools and the classification of the one-codimensional closed unital subalgebras of a unital Banach algebra (Gorin, 1969).
Equalities $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $\mathcal{A}_\Phi = A(\overline{\Omega})$

Theorem

*If Ω and Φ are admissible, Φ is injective in $\overline{\Omega}$, and Φ' does not vanish in Ω, then $\mathcal{H}_\Phi = H^\infty(\Omega)$ and $\mathcal{A}_\Phi = A(\overline{\Omega})$.***

Note: It is easy to see that Φ being injective and Φ' not vanishing are necessary conditions for the equalities to hold.

The proof uses Banach algebra tools and the classification of the one-codimensional closed unital subalgebras of a unital Banach algebra (Gorin, 1969).
\(\mathcal{V} = \Phi(\Omega) \) is an analytic curve in the polydisc \(\mathbb{D}^n \). We consider the algebras \(H^\infty(\mathcal{V}) \) and \(A(\overline{\mathcal{V}}) \).

Put \(\Phi^* F = F \circ \Phi \).

Theorem

If \(\Omega \) and \(\Phi \) are admissible, then \(\Phi^ H^\infty(\mathcal{V}) = \mathcal{H}_\Phi \) and \(\Phi^* A(\overline{\mathcal{V}}) = A_\Phi \).*

The Agler algebra of \(\mathbb{D}^n \):

\[
\|f\|_{SA(\mathbb{D}^n)} = \sup_{\|T_j\| \leq 1, \sigma(T_j) \subset \mathbb{D}} \|f(T_1, \ldots, T_n)\|.
\]

For every \(n \), \(SA(\mathbb{D}^n) \subset H^\infty(\mathbb{D}^n) \). For \(n = 1, 2 \), there is equality, but for \(n \geq 3 \), it is believed that the inclusion is proper.

Theorem

If \(\Omega \) and \(\Phi \) are admissible, then every \(f \in H^\infty(\mathcal{V}) \) can be extended to an \(F \in SA(\mathbb{D}^n) \) with \(\|F\|_{SA(\mathbb{D}^n)} \leq C\|f\|_{H^\infty(\mathcal{V})} \).
$\mathcal{V} = \Phi(\Omega)$ is an analytic curve in the polydisc \mathbb{D}^n. We consider the algebras $H^\infty(\mathcal{V})$ and $A(\overline{\mathcal{V}})$.
Put $\Phi^* F = F \circ \Phi$.

Theorem

If Ω and Φ are admissible, then $\Phi^ H^\infty(\mathcal{V}) = \mathcal{H}_\Phi$ and $\Phi^* A(\overline{\mathcal{V}}) = \mathcal{A}_\Phi$.***

The Agler algebra of \mathbb{D}^n:

$$\|f\|_{SA(\mathbb{D}^n)} = \sup_{\|T_j\| \leq 1, \sigma(T_j) \subset \mathbb{D}} \|f(T_1, \ldots, T_n)\|.$$

For every n, $SA(\mathbb{D}^n) \subset H^\infty(\mathbb{D}^n)$. For $n = 1, 2$, there is equality, but for $n \geq 3$, it is believed that the inclusion is proper.

Theorem

*If Ω and Φ are admissible, then every $f \in H^\infty(\mathcal{V})$ can be extended to an $F \in SA(\mathbb{D}^n)$ with $\|F\|_{SA(\mathbb{D}^n)} \leq C\|f\|_{H^\infty(\mathcal{V})}$.***
1 Test collections and complete K-spectral sets

2 Separation of singularities

3 Generation of algebras

4 Fitting everything together: idea of the proofs of the results about test functions
Theorem B

If \(\Phi : \overline{\Omega} \to \overline{\mathbb{D}}^n \) is admissible and injective and \(\Phi' \) does not vanish in \(\Omega \), then \(\Phi \) is a strong test collection in \(\Omega \).

Take \(T \) with \(\sigma(T) \subset \Omega \) and such that \(\mathbb{D} \) is complete \(K \)-spectral for \(\varphi_k(T) \), and \(f \) a \(s \times s \)-matrix–valued rational function with no poles in \(\overline{\Omega} \). We must show that

\[
\|f(T)\| \leq C \max_{z \in \Omega} \|f(z)\|.
\]

We do the case \(s = 1 \).

Put \(Gf = \sum F_k(f) \circ \varphi_k \). Since \(G - I \) is compact, there exist an operator \(R \) and an operator \(P \) with finite-dimensional range such that \(I = GR + P \). We can write

\[
f = \sum_{k=1}^{n} F_k(Rf) \circ \varphi_k + \sum_{j=1}^{r} \alpha_j(f)g_j,
\]

where \(\alpha_j \in (A(\overline{\Omega}))^* \) and \(g_j \in A(\overline{\Omega}) = A_\Phi \).

\[
\|g_j(T)\| = \left\| \sum_{t=1}^{l} f_{j,t,1}(\varphi_1(T)) \cdots f_{j,t,n}(\varphi_n(T)) \right\| \leq \sum_{t=1}^{l} K^n\|f_{j,t,1}\|_\infty \cdots \|f_{j,t,n}\|_\infty \leq C.
\]
Theorem B

If $\Phi : \bar{\Omega} \to \mathbb{D}^n$ is admissible and injective and Φ' does not vanish in Ω, then Φ is a strong test collection in Ω.

Take T with $\sigma(T) \subset \Omega$ and such that D is complete K-spectral for $\varphi_k(T)$, and f a $s \times s$-matrix–valued rational function with no poles in $\bar{\Omega}$. We must show that

$$\|f(T)\| \leq C \max_{z \in \bar{\Omega}} \|f(z)\|.$$

We do the case $s = 1$.

Put $Gf = \sum F_k(f) \circ \varphi_k$. Since $G - I$ is compact, there exist an operator R and an operator P with finite-dimensional range such that $I = GR + P$. We can write

$$f = \sum_{k=1}^{n} F_k(Rf) \circ \varphi_k + \sum_{j=1}^{r} \alpha_j(f)g_j,$$

where $\alpha_j \in (A(\bar{\Omega}))^*$ and $g_j \in A(\bar{\Omega}) = A_\Phi$.

$$\|g_j(T)\| = \left\| \sum_{t=1}^{l} f_{j,t,1}(\varphi_1(T)) \cdots f_{j,t,n}(\varphi_n(T)) \right\| \leq \sum_{t=1}^{l} K^n \|f_{j,t,1}\|_{\infty} \cdots \|f_{j,t,n}\|_{\infty} \leq C.$$
Theorem B

If $\Phi : \overline{\Omega} \to \overline{D}^n$ is admissible and injective and Φ' does not vanish in Ω, then Φ is a strong test collection in Ω.

Take T with $\sigma(T) \subset \Omega$ and such that \overline{D} is complete K-spectral for $\varphi_k(T)$, and f a $s \times s$-matrix–valued rational function with no poles in $\overline{\Omega}$. We must show that

$$\|f(T)\| \leq C \max_{z \in \overline{\Omega}} \|f(z)\|.$$

We do the case $s = 1$.

Put $Gf = \sum F_k(f) \circ \varphi_k$. Since $G - I$ is compact, there exist an operator R and an operator P with finite-dimensional range such that $I = GR + P$. We can write

$$f = \sum_{k=1}^{n} F_k(Rf) \circ \varphi_k + \sum_{j=1}^{r} \alpha_j(f)g_j,$$

where $\alpha_j \in (A(\overline{\Omega}))^*$ and $g_j \in A(\overline{\Omega}) = A_\Phi$.

$$\|g_j(T)\| = \left\| \sum_{t=1}^{l} f_{j,t,1}(\varphi_1(T)) \cdots f_{j,t,n}(\varphi_n(T)) \right\| \leq \sum_{t=1}^{l} K^n \|f_{j,t,1}\|_\infty \cdots \|f_{j,t,n}\|_\infty \leq C.$$
\[\| f(T) \| \leq \sum_{k=1}^{n} \| F_k(Rf)(\varphi_k(T)) \| + \sum_{j=1}^{r} |\alpha_j(f)| \| g_j(T) \| \leq C \| f \|_{\infty}. \]

The case \(s \geq 2 \) is the same. We have to use that an operator whose range is contained in a commutative \(C^* \)-algebra is automatically completely bounded. This means that the bounds that we have obtained before are uniform in \(s \).
The case when $\sigma(T) \cap \partial \Omega \neq \emptyset$

Theorem A

Let Ω be a simply connected domain, $\Phi : \overline{\Omega} \to \mathbb{D}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depending on T). If moreover, Φ is injective and Φ' does not vanish in Ω, then the test collection constant does not depend on T.

Here $\sigma(T)$ can intersect $\partial \Omega$. We cannot use the previous argument.

Idea: To use a *shrinking* of Ω.

- $\{\psi_\varepsilon\}_{0 \leq \varepsilon \leq \varepsilon_0}$ analytic and univalent functions on some open $U \supset \overline{\Omega}$.
- $\psi_0 \equiv z$.
- $\psi_\varepsilon(\overline{\Omega}) \subset \Omega$ for $\varepsilon > 0$.
- $\varepsilon \mapsto \psi_\varepsilon$ is continuous in the topology of uniform convergence on compact subsets of U.

To construct the shrinking we need that Ω is simply connected.

- Pass to operators $T_\varepsilon = \psi_\varepsilon(T)$.
- $\sigma(T_\varepsilon) \subset \Omega$.
- $T_\varepsilon \to T$ in operator norm.
The case when $\sigma(T) \cap \partial \Omega \neq \emptyset$

Theorem A

Let Ω be a simply connected domain, $\Phi : \overline{\Omega} \to \mathbb{D}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depending on T). If moreover, Φ is injective and Φ' does not vanish in Ω, then the test collection constant does not depend on T.

Here $\sigma(T)$ can intersect $\partial \Omega$. We cannot use the previous argument. Idea: To use a *shrinking* of Ω.

- $\{\psi_\varepsilon\}_{0 \leq \varepsilon \leq \varepsilon_0}$ analytic and univalent functions on some open $U \supset \overline{\Omega}$.
- $\psi_0 \equiv z$.
- $\psi_\varepsilon(\overline{\Omega}) \subset \Omega$ for $\varepsilon > 0$.
- $\varepsilon \mapsto \psi_\varepsilon$ is continuous in the topology of uniform convergence on compact subsets of U.

To construct the shrinking we need that Ω is simply connected.

- Pass to operators $T_\varepsilon = \psi_\varepsilon(T)$.
- $\sigma(T_\varepsilon) \subset \Omega$.
- $T_\varepsilon \to T$ in operator norm.
The case when $\sigma(T) \cap \partial \Omega \neq \emptyset$

Theorem A

Let Ω be a simply connected domain, $\Phi : \overline{\Omega} \to \mathbb{D}^n$ admissible. Then Φ is a strong test collection in $\overline{\Omega}$ (with test collection constant depending on T). If moreover, Φ is injective and Φ' does not vanish in Ω, then the test collection constant does not depend on T.

Here $\sigma(T)$ can intersect $\partial \Omega$. We cannot use the previous argument.

Idea: To use a *shrinking* of Ω.

- $\{\psi_\varepsilon\}_{0 \leq \varepsilon \leq \varepsilon_0}$ analytic and univalent functions on some open $U \supset \overline{\Omega}$.
- $\psi_0 \equiv z$.
- $\psi_\varepsilon(\overline{\Omega}) \subset \Omega$ for $\varepsilon > 0$.
- $\varepsilon \mapsto \psi_\varepsilon$ is continuous in the topology of uniform convergence on compact subsets of U.

To construct the shrinking we need that Ω is simply connected.

- Pass to operators $T_\varepsilon = \psi_\varepsilon(T)$.
- $\sigma(T_\varepsilon) \subset \Omega$.
- $T_\varepsilon \to T$ in operator norm.
Thank you!