Separating structures and operator vessels

Daniel Estévez

Universidad Autónoma de Madrid

Joint with Victor Vinnikov (Ben Gurion Univ. of the Negev) and Dmitry Yakubovich (UAM)

14th July 2014

Summary

(1) Operator vessels
(2) Subnormal operators and algebraic curves
(3) Separating structures
(4) Compression of separating structures to vessels

Summary

(1) Operator vessels

(2) Subnormal operators and algebraic curves

(3) Separating structures

4 Compression of separating structures to vessels

Operator vessels

Definition (Commutative vessel)

H a Hilbert space, E a finite-dimensional Hilbert space.
$\Phi: H \rightarrow E$
Commuting operators $A_{1}, A_{2}: H \rightarrow H$.
Selfadjoint operators $\sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}: E \rightarrow E$.
The tuple $\nu=\left(A_{1}, A_{2} ; H, \phi, E ; \sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}\right)$ is a commutative vessel if:

Studied by M.S. Livšic, V. Vinnikov, and many others.

Operator vessels

Definition (Commutative vessel)

H a Hilbert space, E a finite-dimensional Hilbert space.
$\Phi: H \rightarrow E$
Commuting operators $A_{1}, A_{2}: H \rightarrow H$.
Selfadjoint operators $\sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}: E \rightarrow E$.
The tuple $\mathcal{V}=\left(A_{1}, A_{2} ; H, \Phi, E ; \sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}\right)$ is a commutative vessel if:

$$
\begin{aligned}
\frac{1}{i}\left(A_{k}-A_{k}^{*}\right) & =\Phi^{*} \sigma_{k} \Phi, \\
\sigma_{1} \Phi A_{2}^{*}-\sigma_{2} \Phi A_{1}^{*} & =\gamma^{\text {in }} \Phi, \\
\gamma^{\text {out }} & =\gamma^{\text {in }}+i\left(\sigma_{1} \Phi \Phi^{*} \sigma_{2}-\sigma_{2} \Phi \Phi^{*} \sigma_{1}\right), \\
\sigma_{2} \Phi A_{1}-\sigma_{1} \Phi A_{2} & =\gamma^{\text {out }} \Phi .
\end{aligned}
$$

Operator vessels

Definition (Commutative vessel)

H a Hilbert space, E a finite-dimensional Hilbert space.
$\Phi: H \rightarrow E$
Commuting operators $A_{1}, A_{2}: H \rightarrow H$.
Selfadjoint operators $\sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}: E \rightarrow E$.
The tuple $\mathcal{V}=\left(A_{1}, A_{2} ; H, \Phi, E ; \sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}\right)$ is a commutative vessel if:

$$
\begin{aligned}
\frac{1}{i}\left(A_{k}-A_{k}^{*}\right) & =\Phi^{*} \sigma_{k} \Phi, \\
\sigma_{1} \Phi A_{2}^{*}-\sigma_{2} \Phi A_{1}^{*} & =\gamma^{\text {in }} \Phi, \\
\gamma^{\text {out }} & =\gamma^{\text {in }}+i\left(\sigma_{1} \Phi \Phi^{*} \sigma_{2}-\sigma_{2} \Phi \Phi^{*} \sigma_{1}\right), \\
\sigma_{2} \Phi A_{1}-\sigma_{1} \Phi A_{2} & =\gamma^{\text {out }} \Phi .
\end{aligned}
$$

Studied by M.S. Livšic, V. Vinnikov, and many others.

The discriminant curve

Discriminant polynomial:

$$
\Delta\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {in }}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {out }}\right)
$$

Discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \Delta\left(x_{1}, x_{2}\right)=0\right\} .
$$

Theorem (Generalized Cayley-Hamilton)

$$
\Delta\left(\Lambda_{1}, \Lambda_{2}\right)=0, \quad \triangle\left(A_{1}^{*}, A_{2}^{*}\right)=0 .
$$

In particular, $\sigma\left(A_{1}, A_{2}\right) \subset X$.
The classical Cayley-Hamilton theorem is obtained putting $A_{1}=A, A_{2}=i l, E=H$ y $\phi=I$.

The discriminant curve

Discriminant polynomial:

$$
\Delta\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\mathrm{in}}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\mathrm{out}}\right)
$$

Discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \Delta\left(x_{1}, x_{2}\right)=0\right\} .
$$

Theorem (Generalized Cayley-Hamilton)

In particular, $\sigma\left(A_{1}, A_{2}\right) \subset X$.
The classical Cayley-Hamilton theorem is obtained putting $A_{1}=A, A_{2}=i l, E=H$ y $\Phi=I$.

The discriminant curve

Discriminant polynomial:

$$
\Delta\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {in }}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {out }}\right)
$$

Discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \Delta\left(x_{1}, x_{2}\right)=0\right\}
$$

Theorem (Generalized Cayley-Hamilton)

$$
\Delta\left(A_{1}, A_{2}\right)=0, \quad \Delta\left(A_{1}^{*}, A_{2}^{*}\right)=0
$$

In particular, $\sigma\left(A_{1}, A_{2}\right) \subset X$.
The classical Cayley-Hamilton theorem is obtained putting $A_{1}=A, A_{2}=i l, E=H$ y $\Phi=l$.

The discriminant curve

Discriminant polynomial:

$$
\Delta\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {in }}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {out }}\right)
$$

Discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \Delta\left(x_{1}, x_{2}\right)=0\right\}
$$

Theorem (Generalized Cayley-Hamilton)

$$
\Delta\left(A_{1}, A_{2}\right)=0, \quad \Delta\left(A_{1}^{*}, A_{2}^{*}\right)=0 .
$$

In particular, $\sigma\left(A_{1}, A_{2}\right) \subset X$.
The classical Cayley-Hamilton theorem is obtained putting $A_{1}=A, A_{2}=i l, E=H$ y $\phi=l$.

Summary

(1) Operator vessels

(2) Subnormal operators and algebraic curves

(3) Separating structures

(4) Compression of separating structures to vessels

Subnormal operators

Recall: $S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H, N \in \mathcal{B}(K)$ normal. S is pure subnormal if it has no non-trivial reducing subspace H_{0} such that $S \mid H_{0}$ is normal.

The minimal normal extension:

S is subnormal of finite type if

has finite rank.
If S is pure subnormal of finite type

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,+}
$$

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$T_{0}: M_{-} \rightarrow M_{+}$is invertible.

Subnormal operators

Recall: $S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H, N \in \mathcal{B}(K)$ normal.
S is pure subnormal if it has no non-trivial reducing subspace H_{0} such that $S \mid H_{0}$ is normal.

The minimal normal extension: $N=\left[\begin{array}{cc}S^{* *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if

has finite rank.
If S is pure subnormal of finite type

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,}
$$

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

[^0]
Subnormal operators

Recall: $S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H, N \in \mathcal{B}(K)$ normal.
S is pure subnormal if it has no non-trivial reducing subspace H_{0} such that $S \mid H_{0}$ is normal.

The minimal normal extension: $N=\left[\begin{array}{cc}S^{* *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if

$$
C=S^{*} S-S S^{*}
$$

has finite rank.
If S is pure subnormal of finite type

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,}
$$

[^1]
Subnormal operators

Recall: $S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H, N \in \mathcal{B}(K)$ normal.
S is pure subnormal if it has no non-trivial reducing subspace H_{0} such that $S \mid H_{0}$ is normal.

The minimal normal extension: $N=\left[\begin{array}{cc}S^{* *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if

$$
C=S^{*} S-S S^{*}
$$

has finite rank.
If S is pure subnormal of finite type

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,+},
$$

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$$
N=\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & \Lambda_{-1} & 0 & 0 \\
0 & T_{0} & \Lambda_{0} & * \\
0 & 0 & * & *
\end{array}\right] .
$$

$T_{0}: M_{-} \rightarrow M_{+}$is invertible.

The discriminant curve and mosaic function of D. Xia

The discriminant curve:

$$
X=\left\{(z, w) \in \mathbb{C}: \operatorname{det}\left(T_{0} T_{0}^{*}-\left(w-\Lambda_{0}\right)^{*}\left(z-\Lambda_{0}\right)\right)=0\right\} .
$$

$\sigma(N) \subset\{z \in \mathbb{C}:(z, \bar{z}) \in X\}$.
Equation rewritten in a form similar to vessels:

$$
\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0,
$$

where $z=x_{1}+i x_{2}, w=x_{1}-i x_{2}$, and
$\sigma_{1}=\left[\begin{array}{cc}0 & -i T_{0}^{*} \\ i T_{0} & 0\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}0 & T_{0}^{*} \\ T_{0} & 0\end{array}\right], \quad \gamma=-\left[\begin{array}{cc}T_{0}^{*} T_{0} & T_{0}^{*} \Lambda_{0} \\ T_{0} \Lambda_{-1}^{*} & T_{0} T_{0}^{*}\end{array}\right]$

The mosaic function of D. Xia:

The mosaic function and the discriminant curve can be used to construct an analytic model for S.

The discriminant curve and mosaic function of D. Xia

The discriminant curve:

$$
X=\left\{(z, w) \in \mathbb{C}: \operatorname{det}\left(T_{0} T_{0}^{*}-\left(w-\Lambda_{0}\right)^{*}\left(z-\Lambda_{0}\right)\right)=0\right\} .
$$

$\sigma(N) \subset\{z \in \mathbb{C}:(z, \bar{z}) \in X\}$.
Equation rewritten in a form similar to vessels:

$$
\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0,
$$

where $z=x_{1}+i x_{2}, w=x_{1}-i x_{2}$, and

$$
\sigma_{1}=\left[\begin{array}{cc}
0 & -i T_{0}^{*} \\
i T_{0} & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & T_{0}^{*} \\
T_{0} & 0
\end{array}\right], \quad \gamma=-\left[\begin{array}{cc}
T_{0}^{*} T_{0} & T_{0}^{*} \Lambda_{0} \\
T_{0} \Lambda_{-1}^{*} & T_{0} T_{0}^{*}
\end{array}\right] .
$$

The mosaic function of D. Xia:
$\mu(z)=P_{M_{+}}\left(N-S P_{H}\right)(N-z)^{-1} \mid M_{+}$
The mosaic function and the discriminant curve can be used to construct an analytic model for S.

The discriminant curve and mosaic function of D. Xia

The discriminant curve:

$$
X=\left\{(z, w) \in \mathbb{C}: \operatorname{det}\left(T_{0} T_{0}^{*}-\left(w-\Lambda_{0}\right)^{*}\left(z-\Lambda_{0}\right)\right)=0\right\} .
$$

$\sigma(N) \subset\{z \in \mathbb{C}:(z, \bar{z}) \in X\}$.
Equation rewritten in a form similar to vessels:

$$
\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0,
$$

where $z=x_{1}+i x_{2}, w=x_{1}-i x_{2}$, and

$$
\sigma_{1}=\left[\begin{array}{cc}
0 & -i T_{0}^{*} \\
i T_{0} & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & T_{0}^{*} \\
T_{0} & 0
\end{array}\right], \quad \gamma=-\left[\begin{array}{cc}
T_{0}^{*} T_{0} & T_{0}^{*} \Lambda_{0} \\
T_{0} \Lambda_{-1}^{*} & T_{0} T_{0}^{*}
\end{array}\right] .
$$

The mosaic function of D . Xia:

$$
\mu(z)=P_{M_{+}}\left(N-S P_{H}\right)(N-z)^{-1} \mid M_{+} .
$$

The mosaic function and the discriminant curve can be used to construct an analytic model for S.

The discriminant curve and mosaic function of D. Xia

The discriminant curve:

$$
X=\left\{(z, w) \in \mathbb{C}: \operatorname{det}\left(T_{0} T_{0}^{*}-\left(w-\Lambda_{0}\right)^{*}\left(z-\Lambda_{0}\right)\right)=0\right\} .
$$

$\sigma(N) \subset\{z \in \mathbb{C}:(z, \bar{z}) \in X\}$.
Equation rewritten in a form similar to vessels:

$$
\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0,
$$

where $z=x_{1}+i x_{2}, w=x_{1}-i x_{2}$, and

$$
\sigma_{1}=\left[\begin{array}{cc}
0 & -i T_{0}^{*} \\
i T_{0} & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & T_{0}^{*} \\
T_{0} & 0
\end{array}\right], \quad \gamma=-\left[\begin{array}{cc}
T_{0}^{*} T_{0} & T_{0}^{*} \Lambda_{0} \\
T_{0} \Lambda_{-1}^{*} & T_{0} T_{0}^{*}
\end{array}\right] .
$$

The mosaic function of D . Xia:

$$
\mu(z)=P_{M_{+}}\left(N-S P_{H}\right)(N-z)^{-1} \mid M_{+} .
$$

The mosaic function and the discriminant curve can be used to construct an analytic model for S.

Summary

(1) Operator vessels

(2) Subnormal operators and algebraic curves

(3) Separating structures

4 Compression of separating structures to vessels

Separating structures

Definition (Separating structure)

A separating structure is:
(1) A Hilbert space K.
(2) A pair of commuting selfadjoint opartors $A_{1}, A_{2} \in \mathcal{B}(K)$.
(3) A decomposition

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,+}
$$

$\operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$ and A_{1}, A_{2} have the structure

$$
A_{j}=\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right], \quad j=1,2
$$

Examples:

- N the minimal normal extension of a pure subnormal operator of finite type. $A_{1}=\operatorname{Re}\left(\xi_{1} N+\xi_{2} N^{*}\right), A_{2}=\operatorname{Im}\left(\xi_{1} N+\xi_{2} N^{*}\right)$ form a separating structure $\left(\xi_{j} \in \mathbb{C}\right)$
- f rational with $|f|=1$ in $\mathbb{T} . f^{*}(z)=f\left(\bar{z}^{-1}\right)$. $A_{1}=M_{f+f^{*}}, A_{2}=M_{\left(f-f^{*}\right) / i}$ in $L^{2}(\mathbb{T})$ form a separating structure.

Separating structures

Definition (Separating structure)

A separating structure is:
(1) A Hilbert space K.
(2) A pair of commuting selfadjoint opartors $A_{1}, A_{2} \in \mathcal{B}(K)$.
(3) A decomposition

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,+}
$$

$\operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$ and A_{1}, A_{2} have the structure

$$
A_{j}=\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right], \quad j=1,2
$$

Examples:

- N the minimal normal extension of a pure subnormal operator of finite type.
$\boldsymbol{A}_{1}=\operatorname{Re}\left(\xi_{1} N+\xi_{2} N^{*}\right), \boldsymbol{A}_{2}=\operatorname{Im}\left(\xi_{1} N+\xi_{2} N^{*}\right)$ form a separating structure $\left(\xi_{j} \in \mathbb{C}\right)$.
- f rational with $|f|=1$ in $\mathbb{T} . f^{*}(z)=\overline{f\left(\bar{z}^{-1}\right)} . A_{1}=M_{f+f^{*}}, A_{2}=M_{\left(f-f^{*}\right) / i}$ in $L^{2}(\mathbb{T})$ form a separating structure.

The discriminant curve

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \quad M=M_{-} \oplus M_{+} .
$$

We define selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma$ by

$$
\sigma_{j} P_{M}=-i\left(P_{H_{+}} A_{j}-A_{j} P_{H_{+}}\right), \quad \gamma P_{M}=i\left(A_{1} P_{H_{+}} A_{2}-A_{2} P_{H_{+}} A_{1}\right) .
$$

Lemma

The selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma \in \mathcal{B}(M)$ satisfy
$\sigma_{2} P_{M} A_{1}-\sigma_{1} P_{M} A_{2}+\gamma P_{M}=0$.

We consider the discriminant curve:

$$
x=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0\right\} .
$$

The joint spectrum of $\left(A_{1}, A_{2}\right)$ is contained in the real part of the curve, $X \cap \mathbb{R}^{2}$.
Hypothesis: $\operatorname{det}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right) \neq 0$. It implies $\operatorname{deg} X=\operatorname{dim} M$, so $X \neq \mathbb{C}^{2}$

The discriminant curve

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \quad M=M_{-} \oplus M_{+} .
$$

We define selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma$ by

$$
\sigma_{j} P_{M}=-i\left(P_{H_{+}} A_{j}-A_{j} P_{H_{+}}\right), \quad \gamma P_{M}=i\left(A_{1} P_{H_{+}} A_{2}-A_{2} P_{H_{+}} A_{1}\right)
$$

Lemma

The selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma \in \mathcal{B}(M)$ satisfy

$$
\sigma_{2} P_{M} A_{1}-\sigma_{1} P_{M} A_{2}+\gamma P_{M}=0 .
$$

We consider the discriminant curve:

The joint spectrum of $\left(A_{1}, A_{2}\right)$ is contained in the real part of the curve, $X \cap \mathbb{R}^{2}$.
Hypothesis: $\operatorname{det}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right) \neq 0$. It implies $\operatorname{deg} X=\operatorname{dim} M$, so $X \neq \mathbb{C}^{2}$

The discriminant curve

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \quad M=M_{-} \oplus M_{+} .
$$

We define selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma$ by

$$
\sigma_{j} P_{M}=-i\left(P_{H_{+}} A_{j}-A_{j} P_{H_{+}}\right), \quad \gamma P_{M}=i\left(A_{1} P_{H_{+}} A_{2}-A_{2} P_{H_{+}} A_{1}\right)
$$

Lemma

The selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma \in \mathcal{B}(M)$ satisfy

$$
\sigma_{2} P_{M} A_{1}-\sigma_{1} P_{M} A_{2}+\gamma P_{M}=0
$$

We consider the discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0\right\} .
$$

The joint spectrum of $\left(A_{1}, A_{2}\right)$ is contained in the real part of the curve, $X \cap \mathbb{R}^{2}$.
Hypothesis: $\operatorname{det}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right) \not \equiv 0$. It implies $\operatorname{deg} X=\operatorname{dim} M$, so $X \neq \mathbb{C}^{2}$

The discriminant curve

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \quad M=M_{-} \oplus M_{+} .
$$

We define selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma$ by

$$
\sigma_{j} P_{M}=-i\left(P_{H_{+}} A_{j}-A_{j} P_{H_{+}}\right), \quad \gamma P_{M}=i\left(A_{1} P_{H_{+}} A_{2}-A_{2} P_{H_{+}} A_{1}\right)
$$

Lemma

The selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma \in \mathcal{B}(M)$ satisfy

$$
\sigma_{2} P_{M} A_{1}-\sigma_{1} P_{M} A_{2}+\gamma P_{M}=0
$$

We consider the discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0\right\} .
$$

The joint spectrum of $\left(A_{1}, A_{2}\right)$ is contained in the real part of the curve, $X \cap \mathbb{R}^{2}$.
Hypothesis: $\operatorname{det}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right) \not \equiv 0$. It implies $\operatorname{deg} X=\operatorname{dim} M$, so $X \neq \mathbb{C}^{2}$

The discriminant curve

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \quad M=M_{-} \oplus M_{+} .
$$

We define selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma$ by

$$
\sigma_{j} P_{M}=-i\left(P_{H_{+}} A_{j}-A_{j} P_{H_{+}}\right), \quad \gamma P_{M}=i\left(A_{1} P_{H_{+}} A_{2}-A_{2} P_{H_{+}} A_{1}\right)
$$

Lemma

The selfadjoint matrices $\sigma_{1}, \sigma_{2}, \gamma \in \mathcal{B}(M)$ satisfy

$$
\sigma_{2} P_{M} A_{1}-\sigma_{1} P_{M} A_{2}+\gamma P_{M}=0
$$

We consider the discriminant curve:

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma\right)=0\right\}
$$

The joint spectrum of $\left(A_{1}, A_{2}\right)$ is contained in the real part of the curve, $X \cap \mathbb{R}^{2}$.
Hypothesis: $\operatorname{det}\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}\right) \not \equiv 0$. It implies $\operatorname{deg} X=\operatorname{dim} M$, so $X \neq \mathbb{C}^{2}$.

Separated algebraic curves

An algebraic curve is separated if its real part divides each component of the curve into two connected components, called halves.

In the case of separating structures, the algebraic curve is separated if certain weak assumptions hold.

Whenever the curve is separated, it should be possible to construct an analytic model for the operators $\left(A_{1}, A_{2}\right)$ using Hardy H^{2} spaces in the halves of the curve.

Separated algebraic curves

An algebraic curve is separated if its real part divides each component of the curve into two connected components, called halves.

In the case of separating structures, the algebraic curve is separated if certain weak assumptions hold.

Whenever the curve is separated, it should be possible to construct an analytic model for the operators $\left(A_{1}, A_{2}\right)$ using Hardy H^{2} spaces in the halves of the curve.

Separated algebraic curves

An algebraic curve is separated if its real part divides each component of the curve into two connected components, called halves.

In the case of separating structures, the algebraic curve is separated if certain weak assumptions hold.

Whenever the curve is separated, it should be possible to construct an analytic model for the operators $\left(A_{1}, A_{2}\right)$ using Hardy H^{2} spaces in the halves of the curve.

The mosaic function

$N=A_{1}+i A_{2}$ is normal.
Definition (Mosaic function)

$$
\nu(z)=P_{M}(N-z)^{-1} P_{H_{+}}(N-z) \mid M \in \mathcal{B}(M), \quad z \in \mathbb{C} \backslash \sigma(N) .
$$

$\nu(z)$ is projection-valued.

Theorem

The transform $V: K \rightarrow \operatorname{Hol}(\mathbb{C} \backslash \sigma(N))$,

$$
(1 / x)(z)-P_{M}(N-z)^{-1} x
$$

"almost diagonalizes" N :

$$
(V N X)(z)=z f(z)-[z f(z)]_{z=\infty}, \quad f=V_{x}
$$

V transforms $P_{H_{+}}$into multiplication by ν :

$$
\left(V / P_{H} x\right)(z)=v(z) f(z), \quad f=V x .
$$

The mosaic function

$N=A_{1}+i A_{2}$ is normal.
Definition (Mosaic function)

$$
\nu(z)=P_{M}(N-z)^{-1} P_{H_{+}}(N-z) \mid M \in \mathcal{B}(M), \quad z \in \mathbb{C} \backslash \sigma(N)
$$

$\nu(z)$ is projection-valued.

Theorem

The transform $V: K \rightarrow \operatorname{Hol}(\mathbb{C} \backslash \sigma(N))$,

$$
(V x)(z)=P_{M}(N-z)^{-1} x
$$

"almost diagonalizes" N :

$$
(V N x)(z)=z f(z)-[z f(z)]_{z=\infty}, \quad f=V x
$$

V transforms $P_{H_{+}}$into multiplication by ν :

The mosaic function

$N=A_{1}+i A_{2}$ is normal.
Definition (Mosaic function)

$$
\nu(z)=P_{M}(N-z)^{-1} P_{H_{+}}(N-z) \mid M \in \mathcal{B}(M), \quad z \in \mathbb{C} \backslash \sigma(N)
$$

$\nu(z)$ is projection-valued.

Theorem

The transform $V: K \rightarrow \operatorname{Hol}(\mathbb{C} \backslash \sigma(N))$,

$$
(V x)(z)=P_{M}(N-z)^{-1} x
$$

"almost diagonalizes" N :

$$
(V N x)(z)=z f(z)-[z f(z)]_{z=\infty}, \quad f=V x .
$$

V transforms $P_{H_{+}}$into multiplication by ν :

$$
\left(V P_{H_{+}} x\right)(z)=\nu(z) f(z), \quad f=V x .
$$

A formula for "reproducing kernels"

Put

$$
N=A_{1}+i A_{2}, \quad \alpha=i\left(\sigma_{1}+i \sigma_{2}\right)
$$

Lemma

$P_{M}(N-z)^{-1}\left(N^{*}-\bar{w}\right) P_{M}=\left(z \alpha^{*}+\bar{w} \alpha-2 \gamma\right)^{-1}\left(P_{M}-\alpha \nu(z) \alpha^{-1} P_{M}-\nu(w)^{*} P_{M}\right)$,
for $\bar{z} w \notin \sigma(N)$ and $(\tau, \bar{w}) \notin X$.

The mosaic $\nu(z)$, and matrices $\sigma_{1}, \sigma_{2}, \gamma$ determine the separating structure.

A formula for "reproducing kernels"

Put

$$
N=A_{1}+i A_{2}, \quad \alpha=i\left(\sigma_{1}+i \sigma_{2}\right)
$$

Lemma

$$
P_{M}(N-z)^{-1}\left(N^{*}-\bar{w}\right) P_{M}=\left(z \alpha^{*}+\bar{w} \alpha-2 \gamma\right)^{-1}\left(P_{M}-\alpha \nu(z) \alpha^{-1} P_{M}-\nu(w)^{*} P_{M}\right),
$$

for $z, w \notin \sigma(N)$ and $(z, \bar{w}) \notin X$.

A formula for "reproducing kernels"

Put

$$
N=A_{1}+i A_{2}, \quad \alpha=i\left(\sigma_{1}+i \sigma_{2}\right)
$$

Lemma

$$
P_{M}(N-z)^{-1}\left(N^{*}-\bar{w}\right) P_{M}=\left(z \alpha^{*}+\bar{w} \alpha-2 \gamma\right)^{-1}\left(P_{M}-\alpha \nu(z) \alpha^{-1} P_{M}-\nu(w)^{*} P_{M}\right),
$$

for $z, w \notin \sigma(N)$ and $(z, \bar{w}) \notin X$.

The mosaic $\nu(z)$, and matrices $\sigma_{1}, \sigma_{2}, \gamma$ determine the separating structure.

The restoration formula

Define the meromorphic function Q in X, whose values are parallel projections in M by

$$
Q\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}\left(x_{1}-i x_{2}, \varepsilon\right)}\left[\lambda\left(\sigma_{1}+i \sigma_{2}\right)-\left(x_{1}+i x_{2}\right)\left(\sigma_{1}-i \sigma_{2}\right)-2 i \gamma\right]^{-1}\left(\sigma_{1}+i \sigma_{2}\right) d \lambda .
$$

Then

$$
M=\sum_{\substack{\left(x_{1}, x_{2}\right) \in X \\ x_{1}+x_{2}=z}} Q\left(x_{1}, x_{2}\right) M, \quad \forall z \in \mathbb{C} .
$$

Theorem (Restoration formula)

The curve X is separated. There exists a "half" X of X such that

This formula allows one to recover $\nu(z)$ from the matrices $\sigma_{1}, \sigma_{2}, \gamma$.

The restoration formula

Define the meromorphic function Q in X, whose values are parallel projections in M by

$$
Q\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}\left(x_{1}-i x_{2}, \varepsilon\right)}\left[\lambda\left(\sigma_{1}+i \sigma_{2}\right)-\left(x_{1}+i x_{2}\right)\left(\sigma_{1}-i \sigma_{2}\right)-2 i \gamma\right]^{-1}\left(\sigma_{1}+i \sigma_{2}\right) d \lambda .
$$

Then

$$
M=\sum_{\substack{\left(x_{1}, x_{2}\right) \in X \\ x_{1}+1 x_{2}=z}} Q\left(x_{1}, x_{2}\right) M, \quad \forall z \in \mathbb{C} .
$$

Theorem (Restoration formula)

The curve X is separated. There exists a "half" X_{+}of X such that

$$
\nu(z)=\sum_{\substack{\left(x_{1}, x_{2}\right) \in X_{+} \\ x_{1}+\mid x_{2}=z}} Q\left(x_{1}, x_{2}\right) .
$$

The restoration formula

Define the meromorphic function Q in X, whose values are parallel projections in M by

$$
Q\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}\left(x_{1}-i x_{2}, \varepsilon\right)}\left[\lambda\left(\sigma_{1}+i \sigma_{2}\right)-\left(x_{1}+i x_{2}\right)\left(\sigma_{1}-i \sigma_{2}\right)-2 i \gamma\right]^{-1}\left(\sigma_{1}+i \sigma_{2}\right) d \lambda .
$$

Then

$$
M=\sum_{\substack{\left(x_{1}, x_{2}\right) \in X \\ x_{1}+1 x_{2}=z}} Q\left(x_{1}, x_{2}\right) M, \quad \forall z \in \mathbb{C} .
$$

Theorem (Restoration formula)

The curve X is separated. There exists a "half" X_{+}of X such that

$$
\nu(z)=\sum_{\substack{\left.\left(x_{1}, x_{2}\right) \in x_{+} \\ x_{1}+\dot{x}\right)_{2}=z}} Q\left(x_{1}, x_{2}\right) .
$$

This formula allows one to recover $\nu(z)$ from the matrices $\sigma_{1}, \sigma_{2}, \gamma$.

Summary

© Operator vessels

(2) Subnormal operators and algebraic curves

(3) Separating structures

(4) Compression of separating structures to vessels

Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\overparen{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gathered}
A G \cap H \subset G, \\
A H \subset A G+H .
\end{gathered}
$$

Definition

We define the compression $A: H / G \rightarrow H / G$ by:
(Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H(b y(C 2))$.
(2) $\widetilde{A}(h+G) \stackrel{\text { def }}{=} h^{\prime}+G$.

This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

$$
A=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & A_{0} & 0 \\
* & * & *
\end{array}\right]
$$

[^2]
Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\overparen{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gather*}
A G \cap H \subset G, \tag{C}\\
A H \subset A G+H . \tag{C2}
\end{gather*}
$$

Definition

We define the compression $A: H / G \rightarrow H / G$ by:

- Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H$ (by (C2)).
(2) $\widetilde{A}(h+G) \stackrel{\text { def }}{=} h^{\prime}+G$.

This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

the classical compression A_{0} can be obtained by putting

Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\overparen{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gather*}
A G \cap H \subset G, \tag{C1}\\
A H \subset A G+H . \tag{C2}
\end{gather*}
$$

Definition

We define the compression $\tilde{A}: H / G \rightarrow H / G$ by:

- Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H$ (by (C2)).
 (2) $\widetilde{A}(h+G) \stackrel{\text { def }}{=} h^{\prime}+G$.
 This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\widetilde{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gather*}
A G \cap H \subset G, \tag{C1}\\
A H \subset A G+H . \tag{C2}
\end{gather*}
$$

Definition

We define the compression $\tilde{A}: H / G \rightarrow H / G$ by:
(1) Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H$ (by (C2)).

This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\overparen{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gather*}
A G \cap H \subset G, \tag{C1}\\
A H \subset A G+H . \tag{C2}
\end{gather*}
$$

Definition

We define the compression $\widetilde{A}: H / G \rightarrow H / G$ by:
(0) Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H$ (by (C2)).
(2) $\widetilde{A}(h+G) \stackrel{\text { def }}{=} h^{\prime}+G$.

This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

the classical compression A_{0} can be obtained by putting $G=H_{3}, H=H_{2} \oplus_{\equiv} H_{3}$.

Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\overparen{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gather*}
A G \cap H \subset G, \tag{C1}\\
A H \subset A G+H . \tag{C2}
\end{gather*}
$$

Definition

We define the compression $\tilde{A}: H / G \rightarrow H / G$ by:
(0) Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H$ (by (C2)).
(2) $\widetilde{A}(h+G) \stackrel{\text { def }}{=} h^{\prime}+G$.

This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

the classical compression A_{0} can be obtained by putting $G=H_{3}, H_{H}=\mathrm{H}_{2} \oplus_{\equiv} \mathrm{H}_{3}$.

Generalized compression

$K \supset H \supset G$ vector spaces. $A: K \rightarrow K$
The compression: $\overparen{A}: H / G \rightarrow H / G$.
Hypotheses:

$$
\begin{gather*}
A G \cap H \subset G, \tag{C1}\\
A H \subset A G+H . \tag{C2}
\end{gather*}
$$

Definition

We define the compression $\tilde{A}: H / G \rightarrow H / G$ by:
(1) Given $h \in H$, find $g \in G$ such that $h^{\prime} \stackrel{\text { def }}{=} A(h-g) \in H$ (by (C2)).
(2) $\widetilde{A}(h+G) \stackrel{\text { det }}{=} h^{\prime}+G$.

This is well defined by (C1).

If $K=H_{1} \oplus H_{2} \oplus H_{3}$ and

$$
A=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & A_{0} & 0 \\
* & * & *
\end{array}\right],
$$

the classical compression A_{0} can be obtained by putting $G=H_{3}, H=H_{2} \oplus H_{3}$.

Relation between separating structures and vessels

$A_{1}, A_{2}: K \rightarrow K$. Two separating structures for A_{1}, A_{2}

$$
\begin{array}{ll}
\Sigma: & K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \\
\hat{\Sigma}: & K=\overbrace{\hat{H}_{0,-} \oplus \widehat{M}_{-}}^{\hat{H}_{-}} \oplus \overbrace{\hat{M}_{+} \oplus \widehat{H}_{0,+}}^{\hat{H}_{+}},
\end{array},
$$

such that

$$
H_{-} \subset \widehat{H}_{-}, \quad \widehat{H}_{+} \subset H_{+}
$$

Lemma

The onerators A_{1}, A_{2} can be compressed to H_{+} / H_{+}if and only if $P_{M} \mid M_{+}: M_{+} \rightarrow M_{+}$is invertible.

Relation between separating structures and vessels

$A_{1}, A_{2}: K \rightarrow K$. Two separating structures for A_{1}, A_{2}

$$
\begin{array}{ll}
\Sigma: & K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \\
\hat{\Sigma}: & K=\overbrace{\hat{H}_{0,-} \oplus \widehat{M}_{-}}^{\hat{H}_{-}} \oplus \overbrace{\hat{M}_{+} \oplus \widehat{H}_{0,+}}^{\hat{H}_{+}},
\end{array},
$$

such that

$$
H_{-} \subset \widehat{H}_{-}, \quad \widehat{H}_{+} \subset H_{+}
$$

Lemma

The operators A_{1}, A_{2} can be compressed to H_{+} / \widehat{H}_{+}if and only if $P_{M_{+}} \mid \widehat{M}_{+}: \widehat{M}_{+} \rightarrow M_{+}$is invertible.

Relation between separating structures and vessels

$$
\begin{aligned}
& \Sigma: \quad K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \\
& \hat{\Sigma}: \quad K=\overbrace{\widehat{H}_{0,-} \oplus \widehat{M}_{-}}^{\hat{H}_{-}} \oplus \overbrace{\widehat{M}_{+} \oplus \widehat{H}_{0,+}}^{\hat{H}_{+}},
\end{aligned}
$$

Denote by $\widetilde{A}_{1}, \widetilde{A}_{2}$, the generalized compressions of A_{1}, A_{2} to H_{+} / \widehat{H}_{+}.

Theorem

Given $\Sigma, \widehat{\Sigma}$, the following compressions are vessels:

$$
\begin{gathered}
\Sigma / \widehat{\Sigma}=\left(\widetilde{A}_{1}^{*}, \widetilde{A}_{2}^{*} ; H_{+} / \widehat{H}_{+}, \widetilde{\Phi}, M ; \sigma_{1}, \sigma_{2}, \gamma^{\text {in }}=\gamma-i\left(\sigma_{1} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{2}-\sigma_{2} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{1}\right), \gamma^{\text {out }}=\gamma\right) \\
\Sigma \backslash \widehat{\Sigma}=\left(\widetilde{A}_{1}, \widetilde{A}_{2} ; H_{+} / \widehat{H}_{+},-\widetilde{\Phi}, M ;-\sigma_{1},-\sigma_{2}, \gamma^{\text {in }}=-\gamma, \gamma^{\text {out }}=-\gamma+i\left(\sigma_{1} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{2}-\sigma_{2} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{1}\right)\right)
\end{gathered}
$$

Note that the discriminant curves of Σ / Σ and $\Sigma \backslash \Sigma$ are the same as that of Σ.

Relation between separating structures and vessels

$$
\begin{array}{ll}
\Sigma: & K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \\
\hat{\Sigma}: & K=\overbrace{\widehat{H}_{0,-} \oplus \widehat{M}_{-}}^{\hat{H}_{-}} \oplus \overbrace{\widehat{M}_{+} \oplus \widehat{H}_{0,+}}^{\hat{H}_{+}}
\end{array},
$$

Denote by $\widetilde{A}_{1}, \widetilde{A}_{2}$, the generalized compressions of A_{1}, A_{2} to H_{+} / \widehat{H}_{+}.

Theorem

Given $\Sigma, \widehat{\Sigma}$, the following compressions are vessels:

$$
\begin{gathered}
\Sigma / \widehat{\Sigma}=\left(\widetilde{A}_{1}^{*}, \widetilde{A}_{2}^{*} ; H_{+} / \widehat{H}_{+}, \widetilde{\Phi}, M ; \sigma_{1}, \sigma_{2}, \gamma^{\text {in }}=\gamma-i\left(\sigma_{1} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{2}-\sigma_{2} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{1}\right), \gamma^{\text {out }}=\gamma\right) \\
\Sigma \backslash \widehat{\Sigma}=\left(\widetilde{A}_{1}, \widetilde{A}_{2} ; H_{+} / \widehat{H}_{+},-\widetilde{\Phi}, M ;-\sigma_{1},-\sigma_{2}, \gamma^{\text {in }}=-\gamma, \gamma^{\text {out }}=-\gamma+i\left(\sigma_{1} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{2}-\sigma_{2} \widetilde{\Phi} \widetilde{\Phi}^{*} \sigma_{1}\right)\right)
\end{gathered}
$$

Note that the discriminant curves of $\Sigma / \widehat{\Sigma}$ and $\Sigma \backslash \widehat{\Sigma}$ are the same as that of Σ.

Thank you!

[^0]: $T_{0}: M_{-} \rightarrow M_{+}$is invertible.

[^1]: T_{0}
 $M_{-} \rightarrow M_{+}$is invertible.

[^2]: the classical compression A_{0} can be obtained by putting

