DSLWP-B

El satélite Amateur en órbita lunar

Dr. Daniel Estévez EA4GPZ / M0HXM

15 de septiembre de 2018 IV Iberradio, Ávila

- 🚺 ¿Qué es DSLWP-B?
- Repaso cronológico de la misión
- Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

- 🕕 ¿Qué es DSLWP-B?
- Repaso cronológico de la misión
- Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

La misión Chang'e 4

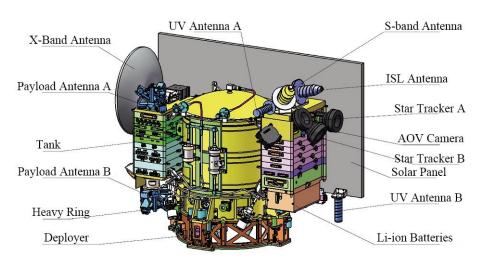
- Chang'e 4 es un rover lunar chino en la cara oculta de la Luna.
 Lanzamiento previsto diciembre 2018.
- Para soportar las comunicaciones de la misión, el 20 de mayo se lanzó *Queqiao*, un relé de comunicaciones que orbita el punto L2.
 Con su antena de 4.2m, soporta hasta 2Mbps usando banda X con el rover y banda S con la Tierra.
- Con Queqiao se lanzaron dos microsatélites, que han sido conocidos con varios nombres: microsatélites CE-4, DSLWP-A1 y -A2, DSLWP-A y -B, y Longjiang 1 y 2.

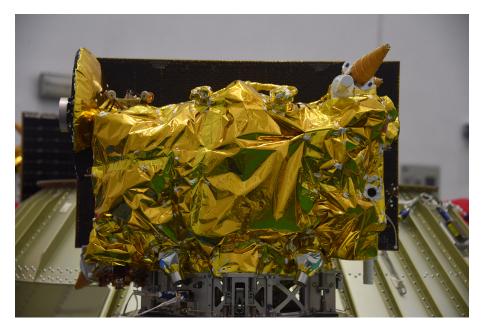

Los microsatélites DSLWP

- Peso 45kg.
- Tamaño 50x50x40cm.
- Diseñados y construidos por el Harbin Institute of Technology (China)
- Misión científica: radioastronomía con interferometría en 1-30MHz. Vuelo en formación a una distancia de 1 a 10km.
- DSLWP-B lleva una cámara diseñada por King Abdulaziz City for Science and Technology (Arabia Saudí).
- Telemetría y telecomando en banda S, link inter-satélite en banda S, datos científicos en banda X (1Mbps).
- Payload Amateur diseñado y construido en el BY2HIT, el radioclub del Harbin Institute of Technology.

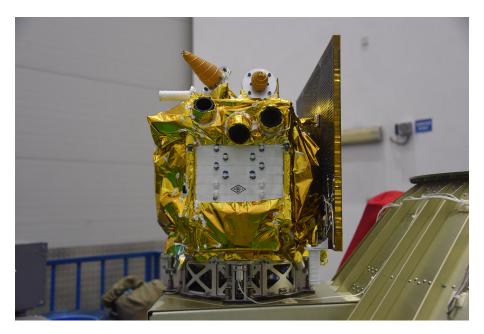
Payload Amateur en DSLWP

- Proyecto dirigido por Wei Mingchuan BG2BHC.
- Equipo SDR basado en los diseños de LilacSat 1 y 2.
- Uso: Telemetría y telecomando auxiliar. Experimentos por Radioaficionados.
- TX: 70cm, RX: 2m.
- Cámara CCD (Inory Eye) para transmitir imágenes SSDV.
- Estaciones de tierra principales: PI9CAM, Dwingeloo (Holanda), disco de 25m. Shahe, Pekín (China), disco de 12m.
- Experimento de VLBI.
- Modulaciones empleadas:
 - GMSK 250baud con código Turbo r = 1/2. Transmisión de telemetría y SSDV.
 - JT4G. Telemetría (abreviada) y repetidor de mensajes.
- Posibilidades de telecomando por Radioaficionados:
 - Transmisión de mensajes a través del repetidor JT4G.
 - Control de la cámara.

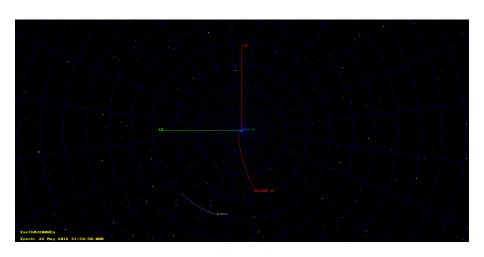




Antenas para el Payload Amateur


- Diseño: doble hélice acortada bibanda.
- Polarización lineal.
- Ganancia pico aprox. 0dBi en UHF,
 -9dBi en VHF.

10 / 56


- 1 ¿Qué es DSLWP-B?
- Repaso cronológico de la misión
- 3 Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

Lanzamiento

- DSLWP-A y -B fueron lanzados junto con Queqiao el 20 de mayo a las 21:25 UTC desde Xichang (China).
- La inyección trans-lunar y separación ocurrió sobre las 21:50 UTC.
- Poco después DSLWP-A y -B comenzaron a transmitir telemetría GMSK sobre América.
- Primeras señales de DSLWP-A recibidas por Edson Pereira PY2SRD con una yagi LFA de 4 elementos.
- Los dos satélites continuaron transmitiendo GMSK hasta las 02:45 UTC del 21 de mayo, momento en el que apagaron sus transmisores UHF a 70000km de distancia.
- Las siguientes estaciones recibieron la señal GMSK: PY2SDR, CD3NDC, PY4ZBZ, N6RFM, PY2ZX.

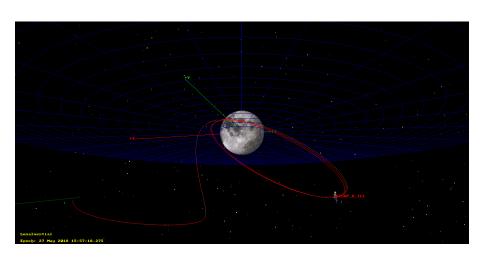
Transferencia

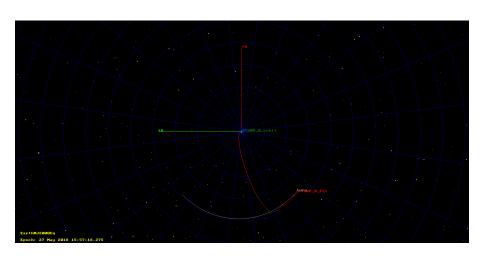
- El seguimiento de las sondas por Radioaficionados continuó usando la baliza en banda S (2275MHz).
- Varias estaciones recibieron la señal: IW1DTU, M0EYT, VE7TIL, y otros.
- El 21 de mayo a las 19:54 UTC se realizó una maniobra de corrección de trayectoria con DSLWP-A.
- Durante esta maniobra se perdió el contacto con DSLWP-A. El contacto no se ha vuelto a recuperar y la misión se ha dado por fallida.
- El 23 de mayo a las 12:00 UTC se realizó una maniobra de correción de trayectoria con DSLWP-B.
- Afortunadamente la maniobra se ejecutó correctamente y DSLWP-B continuó sin problemas su curso hacia la Luna.
- El 23 de mayo a las 12:20 UTC se volvió a activar el transmisor UHF de DSLWP-B y se recibió correctamente la telemetría en Pekín a una distancia de 321500km.

Inyección en órbita lunar

- El 24 de mayo a las 13:30 UTC se realizó una segunda corrección de trayectoria con DSLWP-B.
- El 25 de mayo a las 14:18 UTC se produjo la inyección en órbita lunar de DSLWP-B.
- Parámetros orbitales:

Semieje mayor: 8750km


Excentricidad: 0.76


Inclinación: 21º

Altura del apoápside: 13660km

• Altura del periápside: 360km

Periodo: 20h 24min

Operaciones en órbita lunar

- El 2 de junio a las 22:00 UTC se realizaron las primeras transmisiones GMSK desde órbita lunar. Recibidas correctamente en Pekín.
- Se realizaron más transmisiones el 3 de junio a las 3:00 UTC, que fueron recibidas correctamente en Dwingeloo.
- Desde entonces se han realizado transmisiones ocasionales durante periodos de 2 horas (típicamente en fin de semana). Los periodos en los que el transmisor UHF está activo son publicados por Wei Mingchuan BG2BHC.
- El 10 de junio a las 4:00 UTC se realizó el primer (y único hasta la fecha) experimento de VLBI. La señal GMSK se grabó de manera sincronizada en Dwingeloo y Pekín.
- El 16 de junio a las 9:00 UTC se realizaron las primeras transmisiones JT4G. Desde entonces se usa tanto GMSK como JT4G en los periodos en que el transmisor UHF está activo.

Imágenes de la cámara Saudí

 El 14 de junio se transmitieron en banda X algunas imágenes tomadas por la cámara Saudí.

Repetidor JT4G

 El 15 de julio se probó con éxito el repetidor GMSK⇒JT4G.
 Reinhard Kuehn DK5LA transmitió un mensaje a través de DSLWP-B. El mensaje fue recibido por HB9OAB, W2RTV, IW1DTU, IU2EFA, PY4ZBZ, PA0DLO y I0LYL.

Eclipse lunar

- El 27 de julio a las 20:21 UTC hubo un eclipse total lunar.
- En anticipación, el 20 de julio a las 10:47 UTC se realizó una maniobra para subir el periápside de DSLWP-B. El radio del periápside se incrementó 385km.
- Esta maniobra tuvo dos objetivos: evitar que DSLWP-B pasara mucho tiempo eclipsado por la Tierra y evitar que DSLWP-B acabara colisionando con la Luna en diciembre de 2018.

Transmisiones SSDV

- El 3 de agosto a las 01:27 UTC se realizó la primera transmisión SSDV. La transmisión falló y sólo se pudieron recibir 872 bytes en Dwingeloo.
- Solo se recibió el principio de la imagen, pero se aprecia Marte.

- El 5 de agosto se realizó la siguiente transmisión SSDV.
- Usando las estaciones de Pekín y Dwingeloo, se recibió completamente la imagen de Marte y Capricornio y una imagen parcial de la zona de Mare Nubium, en la Luna.

- El 12 de agosto a las 7:00 UTC se realizó la siguiente transmisión SSDV.
- Se recibió la imagen de Mare Nubium completa y una imagen del sol.

- El 14 de agosto a las 9:00 UTC se realizó otra transmisión SSDV.
- Se recibieron dos imágenes moradas, una completa y otra parcial.

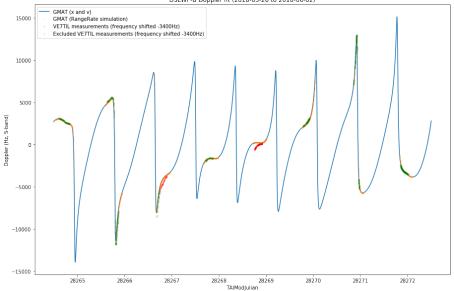
 El 14 de septiembre a las 14:40 UTC se realizó una transmisión SSDV de dos imagenes. Las transmisiones fueron comandadas por Reinhard DK5LA y recibidas en Dwingeloo.

Recepciones por estaciones de Radioaficionado

- Las transmisiones de DSLWP-B desde la órbita lunar han sido recibidas por múltiples estaciones de Radioaficionado, usando antenas con muy distintas prestaciones.
- Listado de reportes http://lilacsat.hit.edu.cn/wp/?page_id=844
- PY2SDR, N6RFM, SP5ULN, PI9CAM, M0IEB, PA3FXB, DK3WN (incluso SSDV), IW1DTU, BG6LQV, BD9BU, G4RGK, 4Z5CP, IU2EFA, JA0CAW, JA2BLZ, BY2HIT, Wakayama University IFES Lab (disco de 12m), SQ5KTM, M0VKK, IK8XLD, LU5EWR-LU8DQ-LU3DMB, EA4GPZ, W2RTV, BG8IXQ, JA1OGZ, YL3CT, I0LYL, SQ3SWF, PA0DLO, K4KDR, JE1CVL, VK5EI, KO4MA, 3B8DU.

- 1 ¿Qué es DSLWP-B?
- Repaso cronológico de la misión
- Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

- 1 ¿Qué es DSLWP-B?
- 2 Repaso cronológico de la misión
- 3 Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

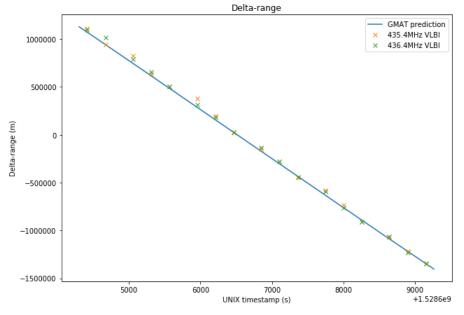

Satélites fuera de la órbita terrestre

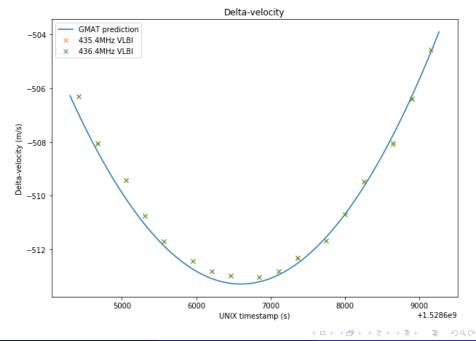
- Para hacer seguimiento de satélites en órbita terrestre se suelen usar los TLEs. Éstos no sirven para satélites fuera de la órbita terrestre.
- Si conocemos la posición y velocidad (elementos / vector de estado) del satélite en cierto instante y todas las fuerzas que actúan en él (gravitación, radiación solar, etc.), podemos calcular su trayectoria.
- GMAT es un software libre desarrollado por la NASA en el que podemos hacer cálculos orbitales. Podemos usarlo para calcular las trayectorias de DSLWP-B.
- También podemos usar los archivos de seguimiento publicados por BG2BHC. Son un listado con la posición y velocidad del satélite cada segundo.
- Principalmente necesitamos calcular la órbita de DSLWP-B si queremos corregir el Doppler (±4kHz en 70cm), ya que su posición es siempre cercana a la Luna (1 o 2 grados de desviación máxima).

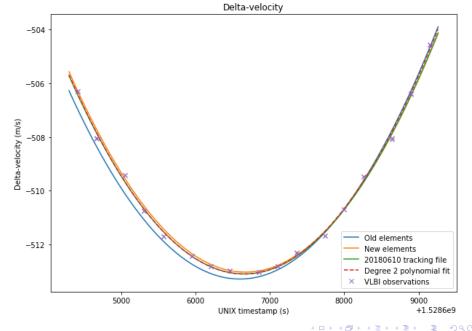
Determinación de órbita con mediciones Doppler

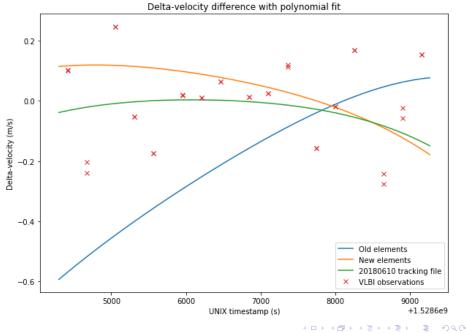
- Pero, ¿cómo sabemos la posición y velocidad del satélite? En la Luna no hay el radar que usamos en baja órbita terrestre.
- El Doppler de la baliza del satélite nos dice la velocidad con la que se acerca/aleja a nuestra estación.
- Empleando mediciones Doppler, podemos determinar la órbita del satélite usando GMAT.
- Me he dedicado a hacer determinación de órbita de DSLWP-B usando las mediciones hechas por Scott Tilley VE7TIL de la baliza en banda S.
- El cálculo de órbitas oficial proviene del seguimiento hecho por el Deep Space Network chino.
- Mi determinación de órbitas, que sólo usa los datos Amateurs de VE7TIL, está bastante próxima a los cálculos oficiales.

DSLWP-B Doppler fit (2018-05-26 to 2018-06-02)



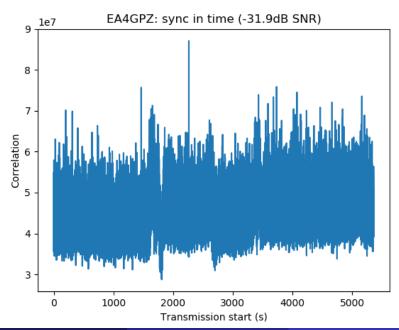

Estructura

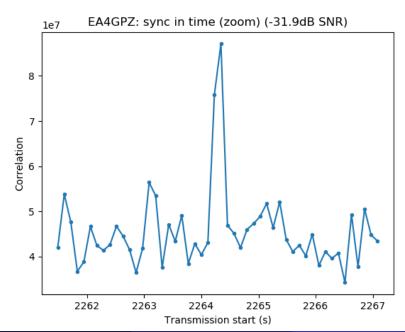

- 🕕 ¿Qué es DSLWP-B?
- 2 Repaso cronológico de la misión
- 3 Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

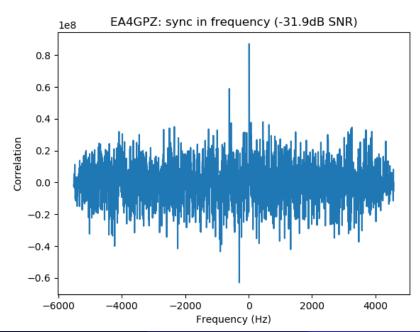

VLBI Amateur

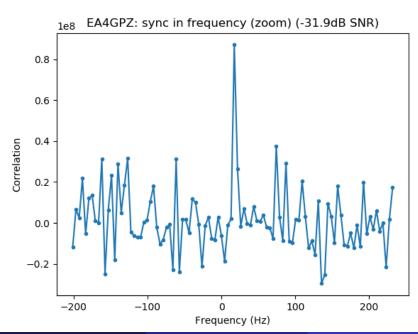
- Realizando una grabación sincronizada de la señal del satélite desde dos estaciones distantes, podemos medir la diferencia de distancias y velocidades entre el satélite y las estaciones.
- Estos datos se pueden emplear para determinación orbital.
- La única sesión de VLBI se realizó el 10 de junio. Durante una hora se grabó la telemetría GMSK con receptores USRP en Shahe (China) y Dwingeloo (Holanda) sincronizados por GPS.
- He desarrollado los algoritmos para procesar las grabaciones VLBI y obtener las medidas.
- También he contrastado las medidas VLBI frente a la determinación de órbitas.

Estructura


- 🕕 ¿Qué es DSLWP-B?
- Repaso cronológico de la misión
- 3 Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV


Señales débiles


- DSLWP-B transmite con una antena corta y 2W de potencia a una distancia de 380000km. Para decodificar la señal hace falta una antena con cierta ganancia (típicamente, al menos una yagi larga).
- El modo JT4G se puede decodificar hasta -23dB SNR en 2500Hz.
 La telemetría GMSK se puede decodificar hasta -9dB SNR en 2500Hz.
- Aun así debería poder hacerse algo con estaciones pequeñas.
- He diseñado unos algoritmos de detección de señales débiles usando correlación que pueden detectar JT4G a mucho menos de -25dB SNR y GMSK a -22dB SNR.
- Estos algoritmos pueden producir falsos positivos, por lo que siempre deben interpretarse y filtrar los resultados.
- Con estos algoritmos, cualquiera puede recibir a DSLWP-B.


Detección de JT4G con una yagi de 7 elementos

- El 22 de junio a las 21:00 UTC hice una grabación de las transmisiones de DSLWP-B en 435.4MHz.
- El receptor fue una yagi Arrow de 7 elementos y un FUNcube Dongle Pro+.
- Usando mi algoritmo, conseguí detectar una de las transmisiones JT4G con un SNR estimado de -32dB.
- Ésta es la estación más pequeña que ha conseguido recibir a DSLWP-B.

Estructura

- 1 ¿Qué es DSLWP-B?
- Repaso cronológico de la misión
- 3 Experimentos realizados
 - Seguimiento de la órbita
 - VLBI Amateur
 - Detección de señales débiles
 - Procesamiento de los datos SSDV

Recepción de SSDV

- En las tranmisiones SSDV se han detectado diversos problemas que causan la pérdida de algunos paquetes, por lo que quedan trozos sin recibir en la imagen.
- El radiotelescopio de 25m de Dwingeloo tiene una SNR excelente, por lo que no debería perderse ningún paquete.
- He estudiado los problemas. Dos causas principales:
 - El TCXO de DSLWP-B da saltos de frecuencia ocasionalmente porque tiene un control digital. Esto hace que se pierda el paquete afectado.
 - El algoritmo de recepción a veces tiene algunos problemas al detectar el principio de un paquete. He solucionado la mayoría de estos problemas.
- He desarrollado un decodificador SSDV para el fomato especial que usa DSLWP-B y scripts para ordenar los fragmentos recibidos.

Conclusiones

- DSLWP-B ha sido todo un hito en la historia de la Radioafición.
 Se pueden enunciar muchas frases afirmando que ha sido "el primer...".
- Para mí han sido unos meses de trabajo loco desde que Wei me avisó el 8 de mayo acerca del lanzamiento (19 posts en mi blog, 9 notebooks Jupyter, 8 scripts GMAT y subiendo).
- La gente que hemos colaborado en la misión DSLWP nos hemos divertido, hemos aprendido mucho y hemos participado en una misión puntera.
- Necesitamos más Radioaficionados españoles participando en este tipo de actividades.

Referencias

- https://destevez.net/tag/dslwp/
- https://twitter.com/ea4gpz
- Wei Mingchuan BG2BHC https://twitter.com/bg2bhc
- Cees Bassa https://twitter.com/cgbassa
- Scott Tilley VE7TIL https://twitter.com/coastal8049
- Web de LilacSat y DSLWP http://lilacsat.hit.edu.cn/

Perdón por la publicidad

Próximamente en primavera 2019 (finales de abril quizás) En Madrid (probablemente)

http://www.radiocluberrante.es/congreso-starcon/