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Von Neumann’s inequality

If T is a contraction on a Hilbert space H (i.e., ‖T‖ ≤ 1), then

‖p(T )‖ ≤ max
z∈D
|p(z)|,

for every polynomial p.

In fact,
‖f (T )‖B(Hs) ≤ max

z∈D
‖f (z)‖,

for every for every rational function f = [fjk ]s
j,k=1 with values on s × s matrices and no

poles in X , and every s ≥ 1.

Here, f (T ) = [fjk (T )]s
j,k=1.
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Complete K -spectral sets

Definition

H a Hilbert space, T ∈ B(H) a bounded operator, X ⊂ Ĉ a compact set. X is a
complete K -spectral set for T if

‖f (T )‖B(Hs) ≤ K max
z∈X
‖f (z)‖B(Cs),

for every rational function f = [fjk ]s
j,k=1 with values on s × s matrices and no poles in X ,

and every s ≥ 1.

T is a contraction if and only if D is a complete 1-spectral set (von Neumann’s
inequality).
T is similar to a contraction (T = SAS−1, ‖A‖ ≤ 1) if and only if D is a complete
K -spectral set for some K .
X = Ω, Ω simply-connected. ϕ : D→ Ω the Riemann map. X is complete
K -spectral for T if and only if T = Sϕ(A)S−1, ‖A‖ ≤ 1
T is similar to an operator having a rational normal dilation to ∂X if and only if X is
a complete K -spectral set for some K . This means that there is H̃ ⊃ H and
N ∈ B(H̃) normal with σ(N) ⊂ ∂X such that

Sf (T )S−1 = PH f (N)|H, ∀f rational with no poles on X .
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complete K -spectral set for T if

‖f (T )‖B(Hs) ≤ K max
z∈X
‖f (z)‖B(Cs),

for every rational function f = [fjk ]s
j,k=1 with values on s × s matrices and no poles in X ,

and every s ≥ 1.

T is a contraction if and only if D is a complete 1-spectral set (von Neumann’s
inequality).
T is similar to a contraction (T = SAS−1, ‖A‖ ≤ 1) if and only if D is a complete
K -spectral set for some K .
X = Ω, Ω simply-connected. ϕ : D→ Ω the Riemann map. X is complete
K -spectral for T if and only if T = Sϕ(A)S−1, ‖A‖ ≤ 1
T is similar to an operator having a rational normal dilation to ∂X if and only if X is
a complete K -spectral set for some K . This means that there is H̃ ⊃ H and
N ∈ B(H̃) normal with σ(N) ⊂ ∂X such that

Sf (T )S−1 = PH f (N)|H, ∀f rational with no poles on X .

Daniel Estévez (UAM) Separation of singularities and K -spectral sets 23 de mayo de 2015 5 / 27



Complete K -spectral sets

Definition

H a Hilbert space, T ∈ B(H) a bounded operator, X ⊂ Ĉ a compact set. X is a
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Some results about complete K -spectral sets

1 Let Ω1, . . . ,Ωn ⊂ Ĉ be simply connected domains with analytic boundaries and
such that their boundaries do not intersect. Then

⋂
Ωj is complete K -spectral for T

if and only if Ωj is complete Kj -spectral for T . (Douglas, Paulsen, 1986).
2 Let D1, . . . ,Dn be discs in Ĉ. If Dj is (complete) 1-spectral for T , then

⋂
Dj is

complete K -spectral for T . (Badea, Beckermann, Crouzeix, 2009).
3 Let X be a compact convex set. If the numerical range of T

W (T ) = {〈Tx , x〉 : ‖x‖ = 1}

is contained in X , then X is a complete K -spectral set for T . (Delyon, Delyon,
1999).

4 Let B be a finite Blaschke product. If σ(T ) ⊂ D and D is complete K ′-spectral for
B(T ), then D is complete K -spectral for T . (Mascioni, 1994).
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Some of our generalizations of these results

Theorem
Let Ω1, . . . ,Ωs be Jordan domains with rectifiable and Ahlfors regular boundaries that
intersect transversally. If Ωj is (complete) Kj -spectral for T , then

⋂
Ωj is (complete)

K -spectral for T .

Theorem

Let Ω be a Jordan domain with C1,α boundary. If Ω and C \Ω are K -spectral for T , then
∂Ω is complete K ′-spectral for T . Hence, T is similar to a normal operator with
spectrum in ∂Ω.

Theorem

Let Ω be a Jordan domain and R > 0 such that for each λ ∈ Ω there is µ ∈ C \ Ω such
that B(µ,R) is tangent to ∂Ω at λ. If ‖(T − µI)−1‖ ≤ R−1, then Ω is complete
K -spectral for some K > 0.

If σ(T ) ⊂ Γ and ‖(T − zI)−1‖ ≤ dist(z, Γ)−1, then T is normal (Stampfli, 1969).
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Test collections

Our main problem:

X ⊂ Ĉ some set. We look for a collection Φ of functions analytic in X such that

σ(T ) ⊂ X , ‖ϕ(T )‖ ≤ 1, ∀ϕ ∈ Φ⇒ X is complete K -spectral for T , (∗)

or

σ(T ) ⊂ X , D is complete K ′-spectral for ϕ(T ), ∀ϕ ∈ Φ⇒

X is complete K -spectral for T .
(∗∗)

Tipically, X = Ω an open domain, or X = Ω.

Definition
Φ is a test collection in X if (∗) holds, with K = K (Ω,Φ).

Φ is a strong test collection in X if (∗∗) holds, with K = K (Ω,Φ,K ′).

Φ is a non-uniform test collection in X if (∗) holds, with K = K (Ω,Φ,T ).

Φ is a non-uniform strong test collection in X if (∗∗) holds, with K = K (Ω,Φ,K ′,T ).
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Previous results restated in the language of test collections

1 Let Ω1, . . . ,Ωn ⊂ Ĉ be simply connected domains with analytic boundaries and
such that their boundaries do not intersect. Let ϕk : Ωk → D be Riemann
conformal mappings. Then {ϕ1, . . . , ϕn} is a strong test collection in

⋂
Ωk .

(Douglas, Paulsen, 1986).
2 Let D1, . . . ,Dn be discs in Ĉ. Let ϕk be a Möbius transformation taking Dk onto D.

Then {ϕ1, . . . , ϕn} is a test collection in
⋂

Dk . (Badea, Beckermann, Crouzeix,
2009).

3 Let X be a compact convex set. Write X =
⋂

Hα, with Hα closed half-planes. Let
ϕα be a Möbius transformation taking Hα onto D. Then {ϕα} is a test collection in
X . (Delyon, Delyon, 1999).

4 If B is a finite Blaschke product, the set {B} is a non-uniform strong test collection
in D. (Mascioni, 1994).
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Non-univalent test collections: Admissible domains and maps

Definition
Ω ⊂ C a domain such that ∂Ω is a disjoint finite union of piecewise analytic Jordan
curves. We assume that the interior angles of the “corners” of ∂Ω are between 0
and π.

{Jk}n
k=1 closed analytic arcs intersecting each other at most in two points and such

that ∂Ω =
⋃

Jk .

Φ = (ϕ1, . . . , ϕn) : Ω→ Dn
analytic in Ω (can be weakened in many cases).

|ϕk | = 1 in Jk .

ϕ′k does not vanish in Jk .

ϕk (ζ) 6= ϕk (z) if ζ ∈ Jk , z ∈ Ω, and z 6= ζ.
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A simple example of an admissible map

Example
Ω1, . . . ,Ωn simply connected domains with analytic boundaries and such that their
boundaries intersect transversally.
Ω =

⋂
Ωk , Jk = ∂Ω ∩ ∂Ωk .

ϕk : Ωk → D Riemann conformal mappings.

But ϕk need not be univalent in Ω in general.
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Our results about admissible maps

Theorem A

Let Ω be a simply connected domain, and Φ : Ω→ Dn
admissible. Then Φ is a

non-uniform strong test collection in Ω. If Φ is injective and Φ′ does not vanish in Ω,
then Φ is a strong test collection in Ω.

Theorem B

Let Ω be a not necessarily simply connected domain. If Φ : Ω→ Dn
is admissible and

injective and Φ′ does not vanish in Ω, then Φ is a strong test collection in Ω.
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Summary

1 Test collections and complete K -spectral sets

2 Separation of singularities

3 Generation of algebras

4 Fitting everything together: idea of the proofs of the results about test collections
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A simple case of an admissible function

Let Ω1, Ω2 be simply connected domains whose boundaries are analytic and intersect
transversally. Put Ω = Ω1 ∩ Ω2.
Let ϕk : Ωk → D be Riemann conformal mappings.
Then Φ = (ϕ1, ϕ2) : Ω→ D2

is admissible.

To prove that Φ is a test collection we can use a decomposition of f ∈ H∞(Ω) as

f = g1 ◦ ϕ1 + g2 ◦ ϕ2,

with gk ∈ H∞(D).

We denote fk = gk ◦ ϕk . The problem is equivalent to writing

f = f1 + f2,

with fk ∈ H∞(Ωk ), because ∃ϕ−1
k .

How to decompose f = f1 + f2?
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Havin–Nersessian–Ortega-Cerdá decomposition

Let Ω1, Ω2 be simply connected domains whose boundaries intersect transversally. Put
Ω = Ω1 ∩ Ω2. Then f ∈ H∞(Ω) can be written as

f = f1 + f2,

with fj ∈ H∞(Ωj ).

f has singularities in ∂Ω, fj has singularities in ∂Ω ∩ ∂Ωj . The singularities of f have
been separated somehow.

How to do this? First try (wrong). Write f as its Cauchy integral f = C∂Ωf . Put
Jk = ∂Ω ∩ ∂Ωk , and fk = CJk f . Then f = f1 + f2, but fk have logarithmic singularities in
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Separation of singularities with the composition

If ϕk are univalent, we have seen how to write

f = g1 ◦ ϕ1 + g2 ◦ ϕ2

by putting gk = fk ◦ ϕ−1
k .

What can we do if ϕk : Ω→ D are not univalent, but they still send Jk bijectively onto
some arc of T?

Our main analytic tool:

Theorem

Let Ω and Φ = (ϕ1, . . . , ϕn) : Ω→ Dn
be admissible. Then there exist bounded linear

operators Fk : H∞(Ω)→ H∞(D) such that the operator

f 7→ f −
n∑

k=1

Fk (f ) ◦ ϕk

is compact in H∞(Ω) and its range is contained in A(Ω) = Hol(Ω) ∩ C(Ω).
Moreover, Fk map A(Ω) into A(D).
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Techniques of the proof

The integral operator

f 7→
∫

Jk

[
1

ζ − z
− ϕ′k (ζ)

ϕk (ζ)− ϕk (z)

]
f (ζ) dζ

is weakly singular. Hence compact.

Replace the Cauchy integrals ∫
Jk

1
ζ − z

f (ζ) dζ

by modified Cauchy integrals ∫
Jk

ϕ′k (ζ)

ϕk (ζ)− z
f (ζ) dζ,

which are analytic in C \ ϕk (Jk ).

Use the trick of Havin–Nersessian–Ortega-Cerdá to get functions in H∞(D) when
cutting f into a sum of Cauchy integrals in arcs Jk . f = C∂Ωf =

∑
CJk f .
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Summary

1 Test collections and complete K -spectral sets

2 Separation of singularities

3 Generation of algebras

4 Fitting everything together: idea of the proofs of the results about test collections
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The algebras HΦ and AΦ

Ω some domain, Φ = (ϕ1, . . . , ϕn) : Ω→ Dn
.

HΦ =


l∑

j=1

fj,1(ϕ1(z))fj,2(ϕ2(z)) · · · fj,n(ϕn(z)) : l ∈ N, fj,k ∈ H∞(D)


AΦ =


l∑

j=1

fj,1(ϕ1(z))fj,2(ϕ2(z)) · · · fj,n(ϕn(z)) : l ∈ N, fj,k ∈ A(D)


These are the (non-closed) subalgebras of H∞(Ω) and A(Ω) generated by functions of
the form f ◦ ϕk , with f ∈ H∞(D) or f ∈ A(D).

Questions:

What geometric conditions on Φ guarantee that HΦ = H∞(Ω) and AΦ = A(Ω)?

What geometric conditions on Φ guarantee that HΦ and AΦ are closed
subalgebras of finite codimension in H∞(Ω) and A(Ω) (respectively)?
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Finite codimension

Theorem
If Ω and Φ are admissible, then HΦ and AΦ are closed subalgebras of finite
codimension in H∞(Ω) and A(Ω) respectively.

Proof.

Put Gf =
∑n

k=1 Fk (f ) ◦ ϕk . Then G : H∞(Ω)→ H∞(Ω) and G − I is compact. Hence,
GH∞(Ω) is a closed subspace of finite codimension in H∞(Ω). Note that
GH∞(Ω) ⊂ HΦ.

For AΦ, use the restriction G|A(Ω).
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Equalities HΦ = H∞(Ω) and AΦ = A(Ω)

Theorem

If Ω and Φ are admissible, Φ is injective in Ω, and Φ′ does not vanish in Ω, then
HΦ = H∞(Ω) and AΦ = A(Ω).

Note: It is easy to see that Φ being injective and Φ′ not vanishing are necessary
conditions for the equalities to hold.

The proof uses Banach algebra tools and the following classification of the
one-codimensional closed unital subalgebras A0 of a unital Banach algebra A (Gorin,
1969).

A0 can have one of the following two forms:

A0 = ker(ψ1 − ψ2), where ψ1, ψ2 ∈M(A), ψ1 6= ψ2. (Informally, A0 are the
functions which coincide at the points ψ1 and ψ2).

A0 = ker η, where η 6= 0 is a continuous derivation at some ψ ∈M(A), i.e., η ∈ A∗

and
η(fg) = η(f )ψ(g) + ψ(f )η(g), ∀f , g ∈ A.

(Informally, A0 are the functions whose derivative at the point ψ vanishes).
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Algebras of functions in analytic curves

V = Φ(Ω) is an analytic curve in the polydisc Dn. We consider the algebras H∞(V) and
A(V).
Put Φ∗F = F ◦ Φ.

Theorem

If Ω and Φ are admissible, then Φ∗H∞(V) = HΦ and Φ∗A(V) = AΦ.

The Agler algebra of Dn:

‖f‖SA(Dn) = sup
‖Tj‖≤1
σ(Tj )⊂D

‖f (T1, . . . ,Tn)‖.

For every n, SA(Dn) ⊂ H∞(Dn). For n = 1, 2, there is equality, but for n ≥ 3, it is
believed that the inclusion is proper.

Theorem
If Ω and Φ are admissible, then every f ∈ H∞(V) can be extended to an F ∈ SA(Dn)
with ‖F‖SA(Dn) ≤ C‖f‖H∞(V).
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Theorem B

If Φ : Ω→ Dn
is admissible and injective and Φ′ does not vanish in Ω, then Φ is a

strong test collection in Ω.

Take T with σ(T ) ⊂ Ω and such that D is complete K -spectral for ϕk (T ), and f a
s × s-matrix–valued rational function with no poles in Ω. We must show that

‖f (T )‖ ≤ C max
z∈Ω
‖f (z)‖.

We do the case s = 1.
Put Gf =

∑
Fk (f ) ◦ ϕk . Since G − I is compact, there exist an operator R and an

operator P with finite-dimensional range such that I = GR + P. We can write

f =
n∑

k=1

Fk (Rf ) ◦ ϕk +
r∑

j=1

αj (f )gj ,

where αj ∈ (A(Ω))∗ and gj ∈ A(Ω) = AΦ.

‖gj (T )‖ =

∥∥∥∥∥
l∑

t=1

fj,t,1(ϕ1(T )) · · · fj,t,n(ϕn(T ))

∥∥∥∥∥ ≤
l∑

t=1

K n‖fj,t,1‖∞ · · · ‖fj,t,n‖∞ ≤ C.
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‖f (T )‖ ≤
n∑

k=1

‖Fk (Rf )(ϕk (T ))‖+
r∑

j=1

|αj (f )|‖gj (T )‖ ≤ C‖f‖∞.

The case s ≥ 2 is the same. We have to use that an operator whose range is contained
in a commutative C∗-algebra is automatically completely bounded. This means that the
bounds that we have obtained before are uniform in s.
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The case when σ(T ) ∩ ∂Ω 6= ∅

Theorem A

Let Ω be a simply connected domain, Φ : Ω→ Dn
admissible. Then Φ is a non-uniform

strong test collection in Ω. If Φ is injective and Φ′ does not vanish in Ω, then Φ is a
strong test collection in Ω.

Here σ(T ) can intersect ∂Ω. We cannot use the previous argument.
Idea: To use a shrinking of Ω.

{ψε}0≤ε≤ε0 analytic and univalent functions on some open U ⊃ Ω.

ψ0 ≡ z.

ψε(Ω) ⊂ Ω for ε > 0.

ε 7→ ψε is continuous in the topology of uniform convergence on compact subsets
of U.

To construct the shrinking we need that Ω is simply connected.

Pass to operators Tε = ψε(T ).

σ(Tε) ⊂ Ω.

Tε → T in operator norm.

Daniel Estévez (UAM) Separation of singularities and K -spectral sets 23 de mayo de 2015 26 / 27



The case when σ(T ) ∩ ∂Ω 6= ∅

Theorem A

Let Ω be a simply connected domain, Φ : Ω→ Dn
admissible. Then Φ is a non-uniform

strong test collection in Ω. If Φ is injective and Φ′ does not vanish in Ω, then Φ is a
strong test collection in Ω.

Here σ(T ) can intersect ∂Ω. We cannot use the previous argument.
Idea: To use a shrinking of Ω.

{ψε}0≤ε≤ε0 analytic and univalent functions on some open U ⊃ Ω.

ψ0 ≡ z.

ψε(Ω) ⊂ Ω for ε > 0.

ε 7→ ψε is continuous in the topology of uniform convergence on compact subsets
of U.

To construct the shrinking we need that Ω is simply connected.

Pass to operators Tε = ψε(T ).

σ(Tε) ⊂ Ω.

Tε → T in operator norm.
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The case when σ(T ) ∩ ∂Ω 6= ∅

Theorem A

Let Ω be a simply connected domain, Φ : Ω→ Dn
admissible. Then Φ is a non-uniform

strong test collection in Ω. If Φ is injective and Φ′ does not vanish in Ω, then Φ is a
strong test collection in Ω.

Here σ(T ) can intersect ∂Ω. We cannot use the previous argument.
Idea: To use a shrinking of Ω.

{ψε}0≤ε≤ε0 analytic and univalent functions on some open U ⊃ Ω.

ψ0 ≡ z.

ψε(Ω) ⊂ Ω for ε > 0.

ε 7→ ψε is continuous in the topology of uniform convergence on compact subsets
of U.

To construct the shrinking we need that Ω is simply connected.

Pass to operators Tε = ψε(T ).

σ(Tε) ⊂ Ω.

Tε → T in operator norm.
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Thank you!
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