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K -spectral sets

If T is a contraction (‖T‖ ≤ 1) in a Hilbert space, then

‖p(T )‖ ≤ sup
|z|≤1

|p(z)|

for every polynomial p (von Neumann’s inequality).

If T is similar to a contraction (‖VTV−1‖ ≤ 1),

‖p(T )‖ ≤ K sup
|z|≤1

|p(z)|.

Generalization to domains different from D: X ⊂ C compact, σ(T ) ⊂ X . Then X is
K -spectral for T if

‖f (T )‖ ≤ K sup
z∈X
|f (z)| (∗)

for every rational function f with poles off X .

If (∗) holds for every s × s matrix-valued rational function f with poles off X , for
every s ∈ N, and with K independent of s, then X is called complete K -spectral.

D is complete K -spectral for T if and only if T is similar to a contraction.
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Compression and dilation

If A ∈ B(K ), K decomposes as

K = G− ⊕ H ⊕G+

and A has the structure

A =

∗ 0 0
∗ B 0
∗ ∗ ∗

 ,
then B is called a compression of A and A is called a dilation of B.

For every polynomial p,

p(A) =

∗ 0 0
∗ p(B) 0
∗ ∗ ∗

 .
Every contraction can be dilated to a unitary. Using this one can prove von Neumann’s
inequality in a simple manner.
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Test functions: a simple example

Ω1,Ω2 ⊂ C Jordan domains whose boundaries intersect transversally,
Ω = Ω1 ∩ Ω2, ϕj : Ωj → D the Rieman mappings
Result: If σ(T ) ⊂ Ω and ‖ϕj (T )‖ ≤ 1, then Ω is K -spectral for T , with K
independient of T
Proof: If f ∈ A(Ω), then f = f1 + f2 with fj ∈ A(Ωj ) and ‖fj‖∞ ≤ C‖f‖∞
(Havin-Nersessian separation of singularities). Then

‖f (T )‖ = ‖(f1◦ϕ−1
1 )(ϕ1(T ))+(f2◦ϕ−1

2 )(ϕ2(T ))‖ ≤ ‖f1◦ϕ−1
1 ‖∞+‖f2◦ϕ−1

2 ‖∞ ≤ 2C‖f‖∞

To prove complete K -spectrality, we need an additional lema about C∗-alebgras.
Try to extend this result to a more general situation (ϕj not univalent)
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Test collections

Definition

Let X ⊂ Ĉ and Φ a collection of functions taking X into D, analytic in neighbourhoods
of X . We say that Φ is a test collection over X if

D is complete K -spectral for ϕ(T ),∀ϕ ∈ Φ,

=⇒ X is complete K ′-spectral for T

holds for every T with σ(T ) ⊂ X .

We consider the cases X = Ω y X = Ω, where Ω ⊂ C is a finitely connected domain
with piecewise analytic boundary. The case X = Ω (when σ(T ) can touch ∂Ω) is
technically more difficult.
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Results from the literature written in terms of test collections

Let Ω1, . . . ,Ωn ⊂ Ĉ be simply connected domains with analytic boundaries which
do not intersect and ϕk : Ωk → D Riemann mappings. Then {ϕ1, . . . , ϕn} is a test
collection over

⋂
Ωk . (Douglas, Paulsen, 1986).

Let D1, . . . ,Dn be discs in Ĉ and ϕk a Möbius transformation taking Dk onto D.
Then {ϕ1, . . . , ϕn} is a test collection over

⋂
Dk . (Badea, Beckermann, Crouzeix,

2009).
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Let X be a convex compact. We write X =
⋂

Hα, with Hα closed half-planes. Let
ϕα be a Möbius transformation taking Hα onto D. Then {ϕα} is a test collection
over X . (Delyon, Delyon, 1999).

If B is a finite Blaschke product,

B(z) = λ

n∏
j=1

z − aj

1− ajz
, |λ| = 1, {aj}n

j=1 ⊂ D.

then the set {B} is a test collection over D. (Mascioni, 1994).
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Admissible domains and functions

Definition
Ω ⊂ C a domain such that ∂Ω is a finite disjoint union of piecewise analytic Jordan
curves. We assume that the interior angles of the “corners” of ∂Ω are in (0, π].

{Jk}n
k=1 closed analytic arcs which intersect at most in their endpoints and such

that ∂Ω =
⋃

Jk .

Φ = (ϕ1, . . . , ϕn) : Ω→ Dn
with |ϕk | = 1 in Jk .

Φ analytic in a neighbourhood of Ω (can be weakened in many cases).

ϕ′k does not vanish in Jk .

ϕk (ζ) 6= ϕk (z) if ζ ∈ Jk , z ∈ Ω and z 6= ζ.
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A simple example of admissible function

Example
Ω1, . . . ,Ωn simply connected domains with analytic boundaries that intersect
transversally.
Ω =

⋂
Ωk , Jk = ∂Ω ∩ ∂Ωk .

ϕk : Ωk → D Riemann mappings.

But: ϕk need not be univalent in Ω in general.
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Main results about admissible functions

Theorem

Let Ω be simply connected and Φ : Ω→ Dn
admissible. Then Φ is a test collection over

Ω (with constant K ′ depending on ‖T‖). If moreover Φ is injective in Ω and Φ′ does not
vanish in Ω, then the constant is independent of T .

Theorem

Let Ω be finitely connected and Φ : Ω→ Dn
admissible. Then Φ is a test collection over

Ω (with constant K ′ depending on the value of ‖(T − λI)−1‖ in a finite number of
points). If moreover Φ is injective in Ω and Φ′ does not vanish in Ω, then the constant is
independent of T .

In the first theorem σ(T ) may intersect ∂Ω while in the second theorem it may not. The
case when σ(T ) intersects ∂Ω is technically much more difficult.
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Von Neumann’s inequality

If T is a contraction, then
‖p(T )‖ ≤ sup

|z|≤1
|p(z)|

for every polynomial p (von Neumann’s inequality).
If T1,T2 are commuting contractions, then

‖p(T1,T2)‖ ≤ sup
|zj |≤1

|p(z1, z2)|

for every polynomial p in two variables (Ando).
However, for three or more commuting contractions T1, . . . ,Tn, it is false in general that

‖p(T1, . . . ,Tn)‖ ≤ sup
|zj |≤1

|p(z1, . . . , zn)|.

Open problem: It is unknown if there is a finite constant Cn such that

‖p(T1, . . . ,Tn)‖ ≤ Cn sup
|zj |≤1

|p(z1, . . . , zn)|

for every polynomial p and commuting contractions T1, . . . ,Tn.
This problem is important in the theory of several operators. It is believed that there is
no such finite constant Cn.
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Blaschke products and von Neumann’s inequality

We denote by B the set of all tuples Φ = (ϕ1, . . . , ϕn) where ϕk are finite Blaschke
products such that Φ is injective in D and Φ′ does not vanish in D.

Theorem
If n ≥ 3 and p ∈ C[z1, . . . , zn],

sup
(T1,...,Tn):‖Tj‖≤1

‖p(T1, . . . ,Tn)‖ = sup ‖p(ϕ1(T ), . . . , ϕn(T ))‖,

where Φ = (ϕ1, . . . , ϕn) runs over all the tuples in B and T runs over all diagonalizable
matrices such that σ(T ) ⊂ D and ‖ϕk (T )‖ ≤ 1, k = 1, . . . , n.

We use a theorem of Agler, McCarthy and Young (2013) which says that it is enough to
study von Neumann’s inequality for contractions which are matrices with all their
eigenvalues different (generic matrices). We also use Pick’s interpolation problem to
construct the Blaschke products (solving a problem whose data has been perturbed in
an adecquate manner).

This theorem allows us to apply our results about test collections to the study of von
Neumann’s inequality.
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Other results about K -spectral sets

Theorem
Let Ω1, . . . ,Ωn be Jordan domains whose boundaries are rectifiable, Ahlfors regular
and intersect transversally. If Ωj is (complete) Kj -spectral for T , for j = 1, . . . , n, then⋂

Ωj is (complete) K -spectral for T .

This theorem generalizes the result of Badea, Beckermann, Crouzeix (2009) about the
intersection of discs in the Riemann sphere.
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Theorem

Let Ω be a piecewise C2 Jordan domain and R > 0 such that for each λ ∈ Ω there
exists a µ(λ) ∈ C \Ω such that B(µ,R) is tangent to ∂Ω at λ. If ‖(T − µ(λ)I)−1‖ ≤ R−1

for every λ ∈ ∂Ω, then Ω is complete K -spectral for T .

This theorem generalizes results of Delyon, Delyon (1999) and Putinar, Sandberg
(2005) about convex sets which contain the numerical range of an operator. It can also
be seen as a generalization of ρ-contractions.
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Separation of singularities with the composition

To prove our theorems about K -spectral sets it would be enough to decompose
every f ∈ A(Ω) as

f (z) = g1(ϕ1(z)) + · · ·+ gn(ϕn(z)), gk ∈ A(D). (∗)

If ϕk are univalent in Ωk , this is equivalent to writing

f (z) = f1(z) + · · ·+ fn(z), fk ∈ A(Ωk ).

This is a separation of singularities (Havin, Nersessian, Ortega-Cerdà).

In the general case, it is not possible to get (∗).

Theorem

If Φ : Ω→ Dn
is admissible, there are bounded linear operators Fk : H∞(Ω)→ H∞(Ω)

such that the operator

f 7→ f −
n∑

k=1

Fk (f ) ◦ ϕk

is compact in H∞(Ω) and its range is contained in A(Ω). Moreover, Fk map A(Ω) into
A(D).
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Techniques of the proof

Write
f (z) =

1
2πi

∫
∂Ω

1
w − z

f (w) dw =
∑

k

1
2πi

∫
Jk

1
w − z

f (w) dw

The integral operator

f 7→
∫

Jk

[
1

w − z
− ϕ′k (w)

ϕk (w)− ϕk (z)

]
f (w) dw

is weakly singular and hence compact.

Replace the Cauchy integrals ∫
Jk

1
w − z

f (w) dw

by modified Cauchy integrals∫
Jk

ϕ′k (w)

ϕk (w)− ζ f (w) dw , ζ := ϕk (z).

Use the trick of Havin-Nersessian to obtain functions of class H∞ when we
decompose f into a sum of Cauchy integrals over the arcs Jk .
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Subalgebras HΦ and AΦ

HΦ =


l∑

j=1

fj,1(ϕ1(z))fj,2(ϕ2(z)) · · · fj,n(ϕn(z)) : l ∈ N, fj,k ∈ H∞(D)


AΦ =


l∑

j=1

fj,1(ϕ1(z))fj,2(ϕ2(z)) · · · fj,n(ϕn(z)) : l ∈ N, fj,k ∈ A(D)


They are subalgebras (not closed, a priori) of H∞(Ω) and A(Ω) respectively.

Questions:
What geometric conditions on Φ guarantee that HΦ = H∞(Ω) and AΦ = A(Ω)?

What geometric conditions on Φ guarantee that HΦ and AΦ are closed (or
weak∗-closed) subalgebras of finite codimension in H∞(Ω) and A(Ω) respectively?
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Main results about HΦ and AΦ

Theorem

If Φ : Ω→ Dn
is admissible, thenHΦ is a weak∗-closed finite-codimensional subalgebra

in H∞(Ω) and AΦ is a closed finite-codimensional subalgebra in A(Ω). If moreover Φ is
injective in Ω and Φ′ does not vanish in Ω, then HΦ = H∞(Ω) and AΦ = A(Ω).

Remark: It is easy to see that to obtain the equalities it is necessary that Φ is inyective
and Φ′ does not vanish.

This is a result about generation of algebras. Related problems have been studied by
Wermer (1958), Bishop (1958), Blumenthal (1974), Sibony and Wermer (1974),
Stessin and Thomas (2003), Matheson and Stessin (2005), and others.
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Techniques in the proof

Compact operators: The operator

L(f ) =
∑

k

Fk (f ) ◦ ϕk

satisfies that L− I is compact (previous theorem). Therefore the range L is closed and
finite-codimensional. The range of L is contained in our subalgebra.

Banach algebras: Classfication of closed unital subalgebras of codimension one in a
commutative Banach algebra (Gorin, 1969):

A subalgebra of codimension one has one of the two following forms:

{f : f (a) = f (b)}
{f : f ′(a) = 0}

(we identify elements in the algebra with functions using Gelfand’s transform and we
consider pointwise derivations in the algebraic sense).
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Resolvent estimates and similarity to a normal

T an operator with σ(T ) ⊂ Γ, where Γ is a smooth curve without self-intersections.

It holds that ‖(T − λI)−1‖ ≤ dist(λ, Γ)−1 for every λ in a neighbourhood of Γ if and
only if T is normal (Stampfli, 1965).

If T is similar to a normal (VTV−1 is normal), then ‖(T − λI)−1‖ ≤ C dist(λ, Γ)−1.
The converse is false: Markus (1964), Benamara-Nikolski (1999), Nikolski-Treil
(2002).

Theorem

If Ω is a C1+α Jordan domain, Γ = ∂Ω, U is a neighbourhood of Γ and

‖(T − λI)−1‖ ≤ dist(λ, Γ)−1, λ ∈ U \ Ω,

‖(T − λI)−1‖ ≤ C dist(λ, Γ)−1, λ ∈ Ω,

then T is similar to a normal.

The two growth conditions can be interchanged.

In the proof of this theorem we use our generalization of the theorem of Delyon and
Delyon to show that Ω is K -spectral for T .
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Generalization of a theorem of van Casteren

Ω a C1+α Jordan domain, Γ = ∂Ω. {γs}0<s<1 is a family of curves that tends nicely to Γ
(when s → 0) if:

1 C−1s ≤ dist(x , Γ) ≤ Cs, x ∈ γs

2 long(γs ∩ B(x , r)) ≤ Cr

If γs ⊂ C \ Ω for every s, we say that {γs} tends nicely to Γ from the outside.

Theorem (Generalization of van Casteren)

If ‖(T − λI)−1‖ ≤ C dist(λ, Γ)−1 for every λ ∈ Ω and∫
γs

‖(T − λI)−1x‖2 |dλ| ≤ C‖x‖2s−1,

∫
γs

‖(T ∗ − λI)−1x‖2 |dλ| ≤ C‖x‖2s−1,

for some family of curves {γs}0<s<1 which tends nicely to Γ from the outside, then T is
similar to a normal.

The case Ω = D, γs = {z ∈ C : |z| = 1 + s} is due to van Casteren (1984).
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Tools

Pseudoanalytic extension: If f ∈ C1+α(Γ), then there exists F ∈ C1(C) such that
F |Γ = f and |∂F (z)| ≤ C‖f‖C1+α dist(z, Γ)α.

Dynikin’s functional calculus: If ‖(T − λI)−1‖ ≤ C dist(λ, Γ)−1, we can define f (T )
for f ∈ C1+α(Γ) by

f (T ) =
1

2πi

∫
∂D

F (λ)(λI − T )−1 dλ− 1
π

∫∫
D
∂F (λ)(λI − T )−1 dA(λ),

where F is any pseudoanalytic extension of f and D ⊃ Γ is a domain.
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Separating structures

Definition
A separating structure is a Hilbert space K , a pair of commuting selfadjoint operators
A1,A2 ∈ B(K ) and an orthogonal decomposition

K =

H−︷ ︸︸ ︷
H0,− ⊕M−⊕

H+︷ ︸︸ ︷
M+ ⊕ H0,+,

with dim M− = dim M+ <∞ such that A1,A2 have the structure

Aj =


∗ ∗ 0 0
∗ Λ−1 R−1 0
0 T0 Λ0 ∗
0 0 ∗ ∗

 , j = 1, 2.

Usually we work with the normal operator N = A1 + iA2 instead of the pair A1,A2.

The finite dimensional space M = M− ⊕M+ is used to characterize the behaviour of
the separating structure using some auxiliary matrices (which are built using
Λ−1,Λ0,R−1,T0).
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An example: subnormal operators of finite type (following Xia and
Yakubovich)

S ∈ B(H) is subnormal if S = N|H, with N ∈ B(K ) normal, K ⊃ H.
S is pure subnormal if there is no non-trivial subspace H0 which reduces S and such
that S|H0 is normal.

If S is pure subnormal, it has a minimal normal extension: N =

[
S′∗ 0
X S

]
.

S is subnormal of finite type if its selfcommutator C = S∗S − SS∗ has finite rank.
If S is pure subnormal of finite type,

K = H0,− ⊕M− ⊕M+ ⊕ H0,+,

with M+ = CH, dim M− = dim M+ <∞, and

N =


∗ ∗ 0 0
∗ Λ−1 0 0
0 T0 Λ0 ∗
0 0 ∗ ∗

 .
A1 = Re(aN + bN∗), A2 = Im(aN + bN∗) form a separating structure (a, b ∈ C).
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Discriminant curve

We define auxiliary matrices α, γ ∈ B(M) by

α =

[
0 −R−1

T0 0

]
, s = PMN|M =

[
Λ−1 R−1

T0 Λ0

]
, γ = −(α∗s + αs∗).

Then
α∗PMN + αPMN∗ + γ = 0.

This motivates the definition of the discriminant curve:

X = {(z,w) ∈ C2 : det(zα∗ + wα + γ) = 0}.

We have σ(N) ⊂ {z ∈ C : (z, z) ∈ X}.
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Mosaic function

It is a generalization of the mosaic function defined by Xia for subnormal operators.

Definition
The mosaic function ν is

ν(z) = PM (N − z)−1PH+ (N − z)|M, z /∈ σ(N).

Its values are parallel projections in M.

The auxiliary matrices α, γ and the mosaic function ν contain all the information about
the separating structure.
If m1,m2 ∈ M y z,w /∈ σ(N), then

〈(N∗ − w)−1m1, (N∗ − z)−1m2〉 = 〈(γ + zα∗ + wα)−1(I − αν(z)α−1 − ν(w)∗)m1,m2〉.

In non-degenerate cases, the linear span of the vectors (N∗ − z)−1m, with m ∈ M,
z /∈ σ(N), is dense in K . Hence, we can recover the scalar product in K .

Question: Is it possible to recover the mosaic function ν from the matrices α and γ?
In this case, the separating structure (which contains infinite-dimensional objects)
comes determined by a finite-dimensional amount of data.
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The meromorphic function Q

We put
Σ = −α−1α∗, D = −α−1γ.

The equation of the curve X rewrites as

det(zΣ + D − wI) = 0.

If p = (z,w) ∈ X , we put

Q(p) = Πw (zΣ + D) =
1

2πi

∫
|λ−w|=ε

(zΣ + D − λI)−1 dλ

the Riesz projection of zΣ + D associated with the eigenvalue w .
Then Q(p) is a parallel projection in M and for every z0∑

p=(z0,w)∈X

Q(p) = IM .

Q is a meromorphic function on X (we understand X as a finite union of Riemann
surfaces, using the blow up).
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Restoration formula

The algebraic curve X is a real curve and it comes equipped with a complex
conjugation. We say that it is separated if its real part XR divides the curve into two
halves (which are exchanged by the complex conjugation).

The matrix Σ has the form

Σ =

[
Σ− 0
0 Σ+

]
.

Theorem (Restoration formula)

If σ(Σ−) ∩ σ(Σ+) = ∅, then the discriminant curve X is separated, X = X− ∪ XR ∪ X+,
and for every z0,

ν(z0) =
∑

p=(z0,w)∈X+

Q(p).
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Vessels

A theory developed by Livšic, Vinnikov and others.
We start with two commuting operators B1,B2 ∈ B(H) which have finite-dimensional
imaginary part. We put

M = (B1 − B∗1 )H + (B2 − B∗2 )H.

We define selfadjoint auxiliary matrices in M:

σj =
1
i

(Bj − B∗j )|M, j = 1, 2,

and γ in, γout.

We define the discriminant polynomial

∆(x1, x2) = det(x1σ2 − x2σ1 + γ in) = det(x1σ2 − x2σ1 + γout)

and the discriminant curve

X = {(x1, x2) ∈ C2 : ∆(x1, x2) = 0}.

We have σ(B1,B2) ⊂ X .
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Recall: Compression and dilation

If A ∈ B(K ), K decomposes as

K = G− ⊕ H ⊕G+

and A has the structure

A =

∗ 0 0
∗ B 0
∗ ∗ ∗

 ,
then B is called a compression of A and A is called a dilation of B.

For every polynomial p,

p(A) =

∗ 0 0
∗ p(B) 0
∗ ∗ ∗

 .
Every contraction can be dilated to a unitary. Using this one can prove von Neumann’s
inequality in a simple manner.

Remark: G+ and H ⊕G+ are invariant for A.
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Dilation and compression of tuples of operators

Single operator

Spectral theory of contractions of Sz.-
Nagy and Foias.

B ∈ B(H), ‖B‖ ≤ 1

dilation

wwww�
~wwwwcompression

Spectral theory of isometries. Functional
model over H2(D) (vector valued).

A isometry/unitary.

Tuples of operators

Livšic-Vinnikov theory.

B1,B2, dim Im Bj <∞

dilation

y
~wwwwcompression

Separating structures. (Functional model
over H2 of the halves of the discriminant
curve).

A1,A2 selfadjoint.
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Compression of separating structures

A1,A2 : K → K selfadjoint. Two separating structures for A1,A2

ω : K =

H−︷ ︸︸ ︷
H0,− ⊕M−⊕

H+︷ ︸︸ ︷
M+ ⊕ H0,+, ω̂ : K =

Ĥ−︷ ︸︸ ︷
Ĥ0,− ⊕ M̂−⊕

Ĥ+︷ ︸︸ ︷
M̂+ ⊕ Ĥ0,+ .

We assume that these structures are subordinate (ω̂ ≺ ω), which means that

Ĥ+ ⊂ H+ (⇐⇒ H− ⊂ Ĥ−).

This is a partial order relation.
We define a notion of generalized compression (where no subspace is required to be
invariant).

Lemma

The operators A1,A2 can be compressed to H+/Ĥ+ if and only if the matrix
PM+ |M̂+ : M̂+ → M+ is invertible.

Theorem

If B1,B2 are the generalized compressions of A1 and A2 to H+/Ĥ+, then B1,B2 form a
vessel and the auxiliary matrices of the vessel σ1, σ2, γ

in, γout can be written in terms of
the auxiliary matrices of the separating structure α, γ in a simple way. In particular, the
discriminant curves of the vessel and separating structure coincide.
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