K-spectral sets, operator tuples and related function theory

Daniel Estévez Sánchez

PhD thesis defense
Advisor: Dmitry Yakubovich

Universidad Autónoma de Madrid

```
28 April 2017
```


Outline

(1) Part I: Test functions and K-spectral sets

- Test collections
- Subalgebras of analytic functions
- An application: operators with spectra on a curve
(2) Part II: Separating structures and operator tuples
- Separating structures
- Vessels and generalized compression

Outline

(1) Part I: Test functions and K-spectral sets

- Test collections
- Subalgebras of analytic functions
- An application: operators with spectra on a curve
(2) Part II: Separating structures and operator tuples
- Separating structures
- Vessels and generalized compression

K-spectral sets

- If T is a contraction $(\|T\| \leq 1)$ in a Hilbert space, then

$$
\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|
$$

for every polynomial p (von Neumann's inequality).

- If T is similar to a contraction ($\left\|V T V^{-1}\right\| \leq 1$),

$$
\|p(T)\| \leq K \sup _{|z| \leq 1}|p(z)| .
$$

- Generalization to domains different from $\overline{\mathbb{D}}: X \subset \mathbb{C}$ compact, $\sigma(T) \subset X$. Then X is K-spectral for T if

$$
\|f(T)\| \leq K \sup _{z \in X}|f(z)|
$$

for every rational function f with poles off X.

- If ($*$) holds for every $s \times s$ matrix-valued rational function f with poles off X, for every $s \in \mathbb{N}$, and with K independent of s, then X is called complete K-spectral.
- $\overline{\mathbb{D}}$ is complete K-spectral for T if and only if T is similar to a contraction.

K-spectral sets

- If T is a contraction $(\|T\| \leq 1)$ in a Hilbert space, then

$$
\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|
$$

for every polynomial p (von Neumann's inequality).

- If T is similar to a contraction ($\left\|V T V^{-1}\right\| \leq 1$),

$$
\|p(T)\| \leq K \sup _{|z| \leq 1}|p(z)| .
$$

- Generalization to domains different from $\overline{\mathbb{D}}: X \subset \mathbb{C}$ compact, $\sigma(T) \subset X$. Then X is K-spectral for T if

$$
\begin{equation*}
\|f(T)\| \leq K \sup _{z \in X}|f(z)| \tag{*}
\end{equation*}
$$

for every rational function f with poles off X.

- If (*) holds for every $s \times s$ matrix-valued rational function f with poles off X, for every $s \in \mathbb{N}$, and with K independent of s, then X is called complete K-spectral.
- $\overline{\mathbb{D}}$ is complete K-spectral for T if and only if T is similar to a contraction.

K-spectral sets

- If T is a contraction $(\|T\| \leq 1)$ in a Hilbert space, then

$$
\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|
$$

for every polynomial p (von Neumann's inequality).

- If T is similar to a contraction ($\left\|V T V^{-1}\right\| \leq 1$),

$$
\|p(T)\| \leq K \sup _{|z| \leq 1}|p(z)| .
$$

- Generalization to domains different from $\overline{\mathbb{D}}: X \subset \mathbb{C}$ compact, $\sigma(T) \subset X$. Then X is K-spectral for T if

$$
\begin{equation*}
\|f(T)\| \leq K \sup _{z \in X}|f(z)| \tag{*}
\end{equation*}
$$

for every rational function f with poles off X.

- If ($*$) holds for every $s \times s$ matrix-valued rational function f with poles off X, for every $s \in \mathbb{N}$, and with K independent of s, then X is called complete K-spectral.
- $\overline{\mathbb{D}}$ is complete K-spectral for T if and only if T is similar to a contraction.

Compression and dilation

If $A \in \mathcal{B}(K), K$ decomposes as

$$
K=G_{-} \oplus H \oplus G_{+}
$$

and A has the structure

$$
A=\left[\begin{array}{lll}
* & 0 & 0 \\
* & B & 0 \\
* & * & *
\end{array}\right],
$$

then B is called a compression of A and A is called a dilation of B.
For every polynomial p,

Every contraction can be dilated to a unitary. Using this one can prove von Neumann's inequality in a simple manner.

Compression and dilation

If $A \in \mathcal{B}(K), K$ decomposes as

$$
K=G_{-} \oplus H \oplus G_{+}
$$

and A has the structure

$$
A=\left[\begin{array}{lll}
* & 0 & 0 \\
* & B & 0 \\
* & * & *
\end{array}\right],
$$

then B is called a compression of A and A is called a dilation of B.
For every polynomial p,

$$
p(A)=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & p(B) & 0 \\
* & * & *
\end{array}\right] .
$$

Every contraction can be dilated to a unitary. Using this one can prove von Neumann's inequality in a simple manner.

Compression and dilation

If $A \in \mathcal{B}(K), K$ decomposes as

$$
K=G_{-} \oplus H \oplus G_{+}
$$

and A has the structure

$$
A=\left[\begin{array}{lll}
* & 0 & 0 \\
* & B & 0 \\
* & * & *
\end{array}\right],
$$

then B is called a compression of A and A is called a dilation of B.
For every polynomial p,

$$
p(A)=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & p(B) & 0 \\
* & * & *
\end{array}\right] .
$$

Every contraction can be dilated to a unitary. Using this one can prove von Neumann's inequality in a simple manner.

Test functions: a simple example

- $\Omega_{1}, \Omega_{2} \subset \mathbb{C}$ Jordan domains whose boundaries intersect transversally, $\Omega=\Omega_{1} \cap \Omega_{2}, \varphi_{j}: \Omega_{j} \rightarrow \mathbb{D}$ the Rieman mappings
- Result: If $\sigma(T) \subset \Omega$ and $\left\|\varphi_{j}(T)\right\| \leq 1$, then $\bar{\Omega}$ is K-spectral for T, with K independient of T
- Proof: If $f \in A(\bar{\Omega})$, then $f=f_{1}+f_{2}$ with $f_{j} \in A\left(\bar{\Omega}_{j}\right)$ and $\left\|f_{j}\right\|_{\infty} \leq C\|f\|_{\infty}$ (Havin-Nersessian separation of singularities). Then
$\|f(T)\|=\left\|\left(f_{1} \circ \varphi_{1}^{-1}\right)\left(\varphi_{1}(T)\right)+\left(f_{2} \circ \varphi_{2}^{-1}\right)\left(\varphi_{2}(T)\right)\right\| \leq\left\|f_{1} \circ \varphi_{1}^{-1}\right\|_{\infty}+\left\|f_{2} \circ \varphi_{2}^{-1}\right\|_{\infty} \leq 2 C\|f\|_{\infty}$
- To prove complete K-spectrality, we need an additional lema about C^{*}-alebgras.
- Try to extend this result to a more general situation (φ_{j} not univalent)

Test functions: a simple example

- $\Omega_{1}, \Omega_{2} \subset \mathbb{C}$ Jordan domains whose boundaries intersect transversally, $\Omega=\Omega_{1} \cap \Omega_{2}, \varphi_{j}: \Omega_{j} \rightarrow \mathbb{D}$ the Rieman mappings
- Result: If $\sigma(T) \subset \Omega$ and $\left\|\varphi_{j}(T)\right\| \leq 1$, then $\bar{\Omega}$ is K-spectral for T, with K independient of T
- Proof: If $f \in A(\bar{\Omega})$, then $f=f_{1}+f_{2}$ with $f_{j} \in A\left(\bar{\Omega}_{j}\right)$ and $\left\|f_{j}\right\|_{\infty} \leq C\|f\|_{\infty}$ (Havin-Nersessian separation of singularities). Then
$\|f(T)\|=\left\|\left(f_{1} \circ \varphi_{1}^{-1}\right)\left(\varphi_{1}(T)\right)+\left(f_{2} \circ \varphi_{2}^{-1}\right)\left(\varphi_{2}(T)\right)\right\| \leq\left\|f_{1} \circ \varphi_{1}^{-1}\right\|_{\infty}+\left\|f_{2} \circ \varphi_{2}^{-1}\right\|_{\infty} \leq 2 C\|f\|_{\infty}$
- To prove complete K-spectrality, we need an additional lema about C^{*}-alebgras.

Test functions: a simple example

- $\Omega_{1}, \Omega_{2} \subset \mathbb{C}$ Jordan domains whose boundaries intersect transversally, $\Omega=\Omega_{1} \cap \Omega_{2}, \varphi_{j}: \Omega_{j} \rightarrow \mathbb{D}$ the Rieman mappings
- Result: If $\sigma(T) \subset \Omega$ and $\left\|\varphi_{j}(T)\right\| \leq 1$, then $\bar{\Omega}$ is K-spectral for T, with K independient of T
- Proof: If $f \in A(\bar{\Omega})$, then $f=f_{1}+f_{2}$ with $f_{j} \in A\left(\bar{\Omega}_{j}\right)$ and $\left\|f_{j}\right\|_{\infty} \leq C\|f\|_{\infty}$ (Havin-Nersessian separation of singularities). Then

$$
\|f(T)\|=\left\|\left(f_{1} \circ \varphi_{1}^{-1}\right)\left(\varphi_{1}(T)\right)+\left(f_{2} \circ \varphi_{2}^{-1}\right)\left(\varphi_{2}(T)\right)\right\| \leq\left\|f_{1} \circ \varphi_{1}^{-1}\right\|_{\infty}+\left\|f_{2} \circ \varphi_{2}^{-1}\right\|_{\infty} \leq 2 C\|f\|_{\infty}
$$

- To prove complete K-spectrality, we need an additional lema about C^{*}-alebgras.
- Try to extend this result to a more general situation (φ_{j} not univalent)

Test collections

Definition

Let $X \subset \widehat{\mathbb{C}}$ and Φ a collection of functions taking X into $\overline{\mathbb{D}}$, analytic in neighbourhoods of X. We say that Φ is a test collection over X if
$\overline{\mathbb{D}}$ is complete K-spectral for $\varphi(T), \forall \varphi \in \Phi$,
$\Longrightarrow \bar{X}$ is complete K^{\prime}-spectral for T
holds for every T with $\sigma(T) \subset X$.

We consider the cases $X=\Omega$ y $X=\bar{\Omega}$, where $\Omega \subset \mathbb{C}$ is a finitely connected domain with piecewise analytic boundary. The case $X=\bar{\Omega}$ (when $\sigma(T)$ can touch $\partial \Omega$) is technically more difficult.

Results from the literature written in terms of test collections

- Let $\Omega_{1}, \ldots, \Omega_{n} \subset \widehat{\mathbb{C}}$ be simply connected domains with analytic boundaries which do not intersect and $\varphi_{k}: \bar{\Omega}_{k} \rightarrow \overline{\mathbb{D}}$ Riemann mappings. Then $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a test collection over $\overline{\bigcap \Omega_{k}}$. (Douglas, Paulsen, 1986).

- Let D_{1}, \ldots, D_{n} be discs in $\widehat{\mathbb{C}}$ and φ_{k} a Möbius transformation taking D_{k} onto \mathbb{D}. Then $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a test collection over $\overline{\cap D_{k}}$. (Badea, Beckermann, Crouzeix, 2009).
- Let X be a convex compact. We write $X=\cap H_{\alpha}$, with H_{α} closed half-planes. Let φ_{α} be a Möbius transformation taking H_{α} onto $\overline{\mathbb{D}}$. Then $\left\{\varphi_{\alpha}\right\}$ is a test collection over X. (Delyon, Delyon, 1999).

- If B is a finite Blaschke product,

$$
B(z)=\lambda \prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}, \quad|\lambda|=1,\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{D} .
$$

then the set $\{B\}$ is a test collection over $\overline{\mathbb{D}}$. (Mascioni, 1994).

Admissible domains and functions

Definition

- $\Omega \subset \mathbb{C}$ a domain such that $\partial \Omega$ is a finite disjoint union of piecewise analytic Jordan curves. We assume that the interior angles of the "corners" of $\partial \Omega$ are in $(0, \pi]$.
- $\left\{J_{k}\right\}_{k=1}^{n}$ closed analytic arcs which intersect at most in their endpoints and such that $\partial \Omega=\bigcup J_{k}$.
- $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ with $\left|\varphi_{k}\right|=1$ in J_{k}.
- Φ analytic in a neighbourhood of $\bar{\Omega}$ (can be weakened in many cases).
- φ_{k}^{\prime} does not vanish in J_{k}.
- $\varphi_{k}(\zeta) \neq \varphi_{k}(z)$ if $\zeta \in J_{k}, z \in \bar{\Omega}$ and $z \neq \zeta$.

A simple example of admissible function

Example

$\Omega_{1}, \ldots, \Omega_{n}$ simply connected domains with analytic boundaries that intersect transversally.
$\Omega=\bigcap \Omega_{k}, J_{k}=\partial \Omega \cap \partial \Omega_{k}$.
$\varphi_{k}: \bar{\Omega}_{k} \rightarrow \overline{\mathbb{D}}$ Riemann mappings.

But: φ_{k} need not be univalent in Ω in general.

A simple example of admissible function

Example

$\Omega_{1}, \ldots, \Omega_{n}$ simply connected domains with analytic boundaries that intersect transversally.
$\Omega=\bigcap \Omega_{k}, J_{k}=\partial \Omega \cap \partial \Omega_{k}$.
$\varphi_{k}: \bar{\Omega}_{k} \rightarrow \overline{\mathbb{D}}$ Riemann mappings.

But: φ_{k} need not be univalent in Ω in general.

Main results about admissible functions

Theorem

Let Ω be simply connected and $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ admissible. Then Φ is a test collection over $\bar{\Omega}$ (with constant K^{\prime} depending on $\|T\|$). If moreover Φ is injective in $\bar{\Omega}$ and Φ^{\prime} does not vanish in Ω, then the constant is independent of T.

Theorem

Let Ω be finitely connected and $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ admissible. Then Φ is a test collection over Ω (with constant K^{\prime} depending on the value of $\left\|(T-\lambda /)^{-1}\right\|$ in a finite number of points). If moreover Φ is injective in $\bar{\Omega}$ and Φ^{\prime} does not vanish in Ω, then the constant is independent of T.

In the first theorem $\sigma(T)$ may intersect $\partial \Omega$ while in the second theorem it may not. The case when $\sigma(T)$ intersects $\partial \Omega$ is technically much more difficult.

Main results about admissible functions

Theorem

Let Ω be simply connected and $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ admissible. Then Φ is a test collection over $\bar{\Omega}$ (with constant K^{\prime} depending on $\|T\|$). If moreover Φ is injective in $\bar{\Omega}$ and Φ^{\prime} does not vanish in Ω, then the constant is independent of T.

Theorem

Let Ω be finitely connected and $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ admissible. Then Φ is a test collection over Ω (with constant K^{\prime} depending on the value of $\left\|(T-\lambda /)^{-1}\right\|$ in a finite number of points). If moreover Φ is injective in $\bar{\Omega}$ and Φ^{\prime} does not vanish in Ω, then the constant is independent of T.

In the first theorem $\sigma(T)$ may intersect $\partial \Omega$ while in the second theorem it may not. The case when $\sigma(T)$ intersects $\partial \Omega$ is technically much more difficult.

Von Neumann's inequality

If T is a contraction, then

$$
\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|
$$

for every polynomial p (von Neumann's inequality).
If T_{1}, T_{2} are commuting contractions, then

$$
\left\|p\left(T_{1}, T_{2}\right)\right\| \leq \sup \left|p\left(z_{1}, z_{2}\right)\right|
$$

for every polynomial p in two variables (Ando).
However, for three or more commuting contractions T_{1}, \ldots, T_{n}, it is false in general that

$$
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leq \sup _{\left|z_{i}\right| \leq 1}\left|p\left(z_{1}, \ldots, z_{n}\right)\right| .
$$

Open problem: It is unknown if there is a finite constant C_{n} such that

$$
\left.\| p^{\prime} T_{1}, \ldots, T_{n}\right) \| \leq C_{n} \sup \left|p^{\prime}\left(z_{1}, \ldots, z_{n}\right)\right|
$$

for every polynomial p and commuting contractions T_{1}, \ldots, T_{n}.
This problem is important in the theory of several operators. It is believed that there is no such finite constant C_{n}.

Von Neumann's inequality

If T is a contraction, then

$$
\|p(T)\| \leq \sup |p(z)|
$$

for every polynomial p (von Neumann's inequality).
If T_{1}, T_{2} are commuting contractions, then

$$
\left\|p\left(T_{1}, T_{2}\right)\right\| \leq \sup _{\left|z_{j}\right| \leq 1}\left|p\left(z_{1}, z_{2}\right)\right|
$$

for every polynomial p in two variables (Ando).
However, for three or more commuting contractions T_{1},
T_{n}, it is false in general that

Open problem: It is unknown if there is a finite constant C_{n} such that

$$
\left.\| p^{\prime} T_{1}, \ldots, T_{n}\right) \| \leq C_{n} \sup \left|p^{\prime}\left(z_{1}, \ldots, z_{n}\right)\right|
$$

Von Neumann's inequality

If T is a contraction, then

$$
\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|
$$

for every polynomial p (von Neumann's inequality).
If T_{1}, T_{2} are commuting contractions, then

$$
\left\|p\left(T_{1}, T_{2}\right)\right\| \leq \sup _{\left|z_{j}\right| \leq 1}\left|p\left(z_{1}, z_{2}\right)\right|
$$

for every polynomial p in two variables (Ando).
However, for three or more commuting contractions T_{1}, \ldots, T_{n}, it is false in general that

$$
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leq \sup _{\left|z_{j}\right| \leq 1}\left|p\left(z_{1}, \ldots, z_{n}\right)\right| .
$$

Open problem: It is unknown if there is a finite constant C_{n} such that

for every polynomial p and commuting contractions T_{1}, \ldots, T_{n}.
This problem is important in the theory of several operators. It is believed that there is no such finite constant C_{n}.

Von Neumann's inequality

If T is a contraction, then

$$
\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|
$$

for every polynomial p (von Neumann's inequality).
If T_{1}, T_{2} are commuting contractions, then

$$
\left\|p\left(T_{1}, T_{2}\right)\right\| \leq \sup _{\left|z_{j}\right| \leq 1}\left|p\left(z_{1}, z_{2}\right)\right|
$$

for every polynomial p in two variables (Ando).
However, for three or more commuting contractions T_{1}, \ldots, T_{n}, it is false in general that

$$
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leq \sup _{\left|z_{j}\right| \leq 1}\left|p\left(z_{1}, \ldots, z_{n}\right)\right|
$$

Open problem: It is unknown if there is a finite constant C_{n} such that

$$
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leq C_{n} \sup _{\left|z_{j}\right| \leq 1}\left|p\left(z_{1}, \ldots, z_{n}\right)\right|
$$

for every polynomial p and commuting contractions T_{1}, \ldots, T_{n}.
This problem is important in the theory of several operators. It is believed that there is no such finite constant C_{n}.

Blaschke products and von Neumann's inequality

We denote by \mathscr{B} the set of all tuples $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ where φ_{k} are finite Blaschke products such that Φ is injective in $\overline{\mathbb{D}}$ and Φ^{\prime} does not vanish in \mathbb{D}.

Theorem

If $n \geq 3$ and $p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$,

$$
\sup _{\left(T_{1}, \ldots, T_{n}\right):\left\|T_{j}\right\| \leq 1}\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\|=\sup \left\|p\left(\varphi_{1}(T), \ldots, \varphi_{n}(T)\right)\right\|,
$$

where $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ runs over all the tuples in \mathscr{B} and T runs over all diagonalizable matrices such that $\sigma(T) \subset \mathbb{D}$ and $\left\|\varphi_{k}(T)\right\| \leq 1, k=1, \ldots, n$.

We use a theorem of Agler, McCarthy and Young (2013) which says that it is enough to study von Neumann's inequality for contractions which are matrices with all their eigenvalues different (generic matrices). We also use Pick's interpolation problem to construct the Blaschke products (solving a problem whose data has been perturbed in an adecquate manner)

This theorem allows us to apply our results about test collections to the study of von Neumann's inequality.

Blaschke products and von Neumann's inequality

We denote by \mathscr{B} the set of all tuples $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ where φ_{k} are finite Blaschke products such that Φ is injective in $\overline{\mathbb{D}}$ and Φ^{\prime} does not vanish in \mathbb{D}.

Theorem

$$
\begin{aligned}
& \text { If } n \geq 3 \text { and } p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \\
& \qquad \sup _{\left(T_{1}, \ldots, T_{n}\right):\left\|T_{j}\right\| \leq 1}\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\|=\sup \left\|p\left(\varphi_{1}(T), \ldots, \varphi_{n}(T)\right)\right\|, \\
& \text { where } \Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \text { runs over all the tuples in } \mathscr{B} \text { and } T \text { runs over all diagonalizable } \\
& \text { matrices such that } \sigma(T) \subset \mathbb{D} \text { and }\left\|\varphi_{k}(T)\right\| \leq 1, k=1, \ldots, n .
\end{aligned}
$$

We use a theorem of Agler, McCarthy and Young (2013) which says that it is enough to study von Neumann's inequality for contractions which are matrices with all their eigenvalues different (generic matrices). We also use Pick's interpolation problem to construct the Blaschke products (solving a problem whose data has been perturbed in an adecquate manner).

This theorem allows us to apply our results about test collections to the study of von Neumann's inequality.

Other results about K-spectral sets

Theorem

Let $\Omega_{1}, \ldots, \Omega_{n}$ be Jordan domains whose boundaries are rectifiable, Ahlfors regular and intersect transversally. If $\bar{\Omega}_{j}$ is (complete) K_{j}-spectral for T, for $j=1, \ldots, n$, then $\bar{\cap} \Omega_{j}$ is (complete) K-spectral for T.

This theorem generalizes the result of Badea, Beckermann, Crouzeix (2009) about the intersection of discs in the Riemann sphere.

Theorem

Let Ω be a piecewise C^{2} Jordan domain and $R>0$ such that for each $\lambda \in \Omega$ there exists a $\mu(\lambda) \in \mathbb{C} \backslash \bar{\Omega}$ such that $B(\mu, R)$ is tangent to $\partial \Omega$ at λ. If $\left\|(T-\mu(\lambda) I)^{-1}\right\| \leq R^{-1}$ for every $\lambda \in \partial \Omega$, then $\bar{\Omega}$ is complete K-spectral for T.

This theorem generalizes results of Delyon, Delyon (1999) and Putinar, Sandberg (2005) about convex sets which contain the numerical range of an operator. It can also be seen as a generalization of ρ-contractions.

Outline

(1) Part I: Test functions and K-spectral sets

- Test collections
- Subalgebras of analytic functions
- An application: operators with spectra on a curve
(2) Part II: Separating structures and operator tuples
- Separating structures
- Vessels and generalized compression

Separation of singularities with the composition

- To prove our theorems about K-spectral sets it would be enough to decompose every $f \in A(\bar{\Omega})$ as

$$
\begin{equation*}
f(z)=g_{1}\left(\varphi_{1}(z)\right)+\cdots+g_{n}\left(\varphi_{n}(z)\right), \quad g_{k} \in A(\overline{\mathbb{D}}) . \tag{*}
\end{equation*}
$$

- If φ_{k} are univalent in Ω_{k}, this is equivalent to writing

$$
f(z)=f_{1}(z)+\cdots+f_{n}(z), \quad f_{k} \in A\left(\bar{\Omega}_{k}\right) .
$$

- This is a separation of singularities (Havin, Nersessian, Ortega-Cerdà).
- In the general case, it is not possible to get ($*$).

Theorem

If $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{I}}^{n}$ is admissible, there are bounded linear operators $F_{k}: H^{\infty}(\Omega) \rightarrow H^{\infty}(\Omega)$ such that the operator

Separation of singularities with the composition

- To prove our theorems about K-spectral sets it would be enough to decompose every $f \in A(\bar{\Omega})$ as

$$
\begin{equation*}
f(z)=g_{1}\left(\varphi_{1}(z)\right)+\cdots+g_{n}\left(\varphi_{n}(z)\right), \quad g_{k} \in A(\overline{\mathbb{D}}) . \tag{*}
\end{equation*}
$$

- If φ_{k} are univalent in Ω_{k}, this is equivalent to writing

$$
f(z)=f_{1}(z)+\cdots+f_{n}(z), \quad f_{k} \in A\left(\bar{\Omega}_{k}\right) .
$$

- This is a separation of singularities (Havin, Nersessian, Ortega-Cerdà).
- In the general case, it is not possible to get (*).

Theorem

If $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ is admissible, there are bounded linear operators $F_{k}: H^{\infty}(\Omega) \rightarrow H^{\infty}(\Omega)$ such that the operator

$$
f \mapsto f-\sum_{k=1}^{n} F_{k}(f) \circ \varphi_{k}
$$

is compact in $H^{\infty}(\Omega)$ and its range is contained in $A(\bar{\Omega})$. Moreover, F_{k} map $A(\bar{\Omega})$ into $A(\overline{\mathbb{D}})$.

Techniques of the proof

- Write

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{1}{w-z} f(w) d w=\sum_{k} \frac{1}{2 \pi i} \int_{J_{k}} \frac{1}{w-z} f(w) d w
$$

- The integral operator

$$
f \mapsto \int_{J_{k}}\left[\frac{1}{w-z}-\frac{\varphi_{k}^{\prime}(w)}{\varphi_{k}(w)-\varphi_{k}(z)}\right] f(w) d w
$$

is weakly singular and hence compact.

- Replace the Cauchy integrals

$$
\int_{J_{k}} \frac{1}{w-z} f(w) d w
$$

by modified Cauchy integrals

$$
\int_{J_{k}} \frac{\varphi_{k}^{\prime}(w)}{\varphi_{k}(w)-\zeta} f(w) d w, \quad \zeta:=\varphi_{k}(z) .
$$

- Use the trick of Havin-Nersessian to obtain functions of class H^{∞} when we decompose f into a sum of Cauchy integrals over the arcs J_{k}.

Subalgebras \mathcal{H}_{Φ} and \mathcal{A}_{Φ}

$$
\begin{aligned}
\mathcal{H}_{\Phi} & =\left\{\sum_{j=1}^{l} f_{j, 1}\left(\varphi_{1}(z)\right) f_{j, 2}\left(\varphi_{2}(z)\right) \cdots f_{j, n}\left(\varphi_{n}(z)\right): I \in \mathbb{N}, f_{j, k} \in H^{\infty}(\mathbb{D})\right\} \\
\mathcal{A}_{\Phi} & =\left\{\sum_{j=1}^{l} f_{j, 1}\left(\varphi_{1}(z)\right) f_{j, 2}\left(\varphi_{2}(z)\right) \cdots f_{j, n}\left(\varphi_{n}(z)\right): I \in \mathbb{N}, f_{j, k} \in A(\overline{\mathbb{D}})\right\}
\end{aligned}
$$

They are subalgebras (not closed, a priori) of $H^{\infty}(\Omega)$ and $A(\bar{\Omega})$ respectively.

Questions:

- What geometric conditions on Φ guarantee that $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$?
- What geometric conditions on Φ guarantee that \mathcal{H}_{Φ} and \mathcal{A}_{Φ} are closed (or weak*-closed) subalgebras of finite codimension in $H^{\infty}(\Omega)$ and $A(\bar{\Omega})$ respectively?

Main results about \mathcal{H}_{Φ} and \mathcal{A}_{Φ}

Theorem

If $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ is admissible, then \mathcal{H}_{Φ} is a weak*-closed finite-codimensional subalgebra in $H^{\infty}(\Omega)$ and \mathcal{A}_{Φ} is a closed finite-codimensional subalgebra in $A(\bar{\Omega})$. If moreover Φ is injective in $\bar{\Omega}$ and Φ^{\prime} does not vanish in Ω, then $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$.

Remark: It is easy to see that to obtain the equalities it is necessary that Φ is inyective and Φ^{\prime} does not vanish.

This is a result about generation of algebras. Related problems have been studied by Wermer (1958), Bishop (1958), Blumenthal (1974), Sibony and Wermer (1974), Stessin and Thomas (2003), Matheson and Stessin (2005), and others.

Main results about \mathcal{H}_{Φ} and \mathcal{A}_{Φ}

Theorem

If $\Phi: \bar{\Omega} \rightarrow \overline{\mathbb{D}}^{n}$ is admissible, then \mathcal{H}_{Φ} is a weak*-closed finite-codimensional subalgebra in $H^{\infty}(\Omega)$ and \mathcal{A}_{Φ} is a closed finite-codimensional subalgebra in $A(\bar{\Omega})$. If moreover Φ is injective in $\bar{\Omega}$ and Φ^{\prime} does not vanish in Ω, then $\mathcal{H}_{\Phi}=H^{\infty}(\Omega)$ and $\mathcal{A}_{\Phi}=A(\bar{\Omega})$.

Remark: It is easy to see that to obtain the equalities it is necessary that Φ is inyective and Φ^{\prime} does not vanish.

This is a result about generation of algebras. Related problems have been studied by Wermer (1958), Bishop (1958), Blumenthal (1974), Sibony and Wermer (1974), Stessin and Thomas (2003), Matheson and Stessin (2005), and others.

Techniques in the proof

Compact operators: The operator

$$
L(f)=\sum_{k} F_{k}(f) \circ \varphi_{k}
$$

satisfies that $L-I$ is compact (previous theorem). Therefore the range L is closed and finite-codimensional. The range of L is contained in our subalgebra.

Banach algebras: Classfication of closed unital subalgebras of codimension one in a commutative Banach algebra (Gorin, 1969):

A subalgebra of codimension one has one of the two following forms:

- $\{f: f(a)=f(b)\}$
- $\left\{f: f^{\prime}(a)=0\right\}$
(we identify elements in the algebra with functions using Gelfand's transform and we consider pointwise derivations in the algebraic sense).

Techniques in the proof

Compact operators: The operator

$$
L(f)=\sum_{k} F_{k}(f) \circ \varphi_{k}
$$

satisfies that L - $/$ is compact (previous theorem). Therefore the range L is closed and finite-codimensional. The range of L is contained in our subalgebra.

Banach algebras: Classfication of closed unital subalgebras of codimension one in a commutative Banach algebra (Gorin, 1969):

A subalgebra of codimension one has one of the two following forms:

- $\{f: f(a)=f(b)\}$
- $\left\{f: f^{\prime}(a)=0\right\}$
(we identify elements in the algebra with functions using Gelfand's transform and we consider pointwise derivations in the algebraic sense).

Outline

(1) Part I: Test functions and K-spectral sets

- Test collections
- Subalgebras of analytic functions
- An application: operators with spectra on a curve
(2) Part II: Separating structures and operator tuples
- Separating structures
- Vessels and generalized compression

Resolvent estimates and similarity to a normal

- T an operator with $\sigma(T) \subset \Gamma$, where Γ is a smooth curve without self-intersections.
- It holds that $\left\|(T-\lambda /)^{-1}\right\| \leq \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every λ in a neighbourhood of Γ if and only if T is normal (Stampfli, 1965).
- If T is similar to a normal ($V T V^{-1}$ is normal), then $\left\|(T-\lambda /)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$. The converse is false: Markus (1964), Benamara-Nikolski (1999), Nikolski-Treil (2002).

Theorem

If Ω is a $C^{1+\infty}$ Jordan domain, $\Gamma=\partial \Omega, U$ is a neighbourhood of Γ and $\left\|(T-\lambda I)^{-1}\right\| \leq \operatorname{dist}(\lambda, \Gamma)^{-1}, \quad \lambda \in U \backslash \bar{\Omega}$, $\left\|(T-\lambda /)^{-1}\right\|<C \operatorname{dist}(\lambda, \Gamma)^{-1}, \quad \lambda \in \Omega$

then T is similar to a normal

The two growth conditions can be interchanged.
In the proof of this theorem we use our generalization of the theorem of Delyon and Delyon to show that Ω is K-spectral for T.

Resolvent estimates and similarity to a normal

- T an operator with $\sigma(T) \subset \Gamma$, where Γ is a smooth curve without self-intersections.
- It holds that $\left\|(T-\lambda I)^{-1}\right\| \leq \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every λ in a neighbourhood of Γ if and only if T is normal (Stampfli, 1965).
- If T is similar to a normal $\left(V T V^{-1}\right.$ is normal), then $\left\|(T-\lambda /)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$. The converse is false: Markus (1964), Benamara-Nikolski (1999), Nikolski-Treil (2002).

Theorem

If Ω is a $C^{1+\alpha}$ Jordan domain, $\Gamma=\partial \Omega, U$ is a neighbourhood of Γ and

$$
\begin{aligned}
& \left\|(T-\lambda I)^{-1}\right\| \leq \operatorname{dist}(\lambda, \Gamma)^{-1}, \quad \lambda \in U \backslash \bar{\Omega}, \\
& \left\|(T-\lambda I)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}, \quad \lambda \in \Omega,
\end{aligned}
$$

then T is similar to a normal.
The two growth conditions can be interchanged.
In the proof of this theorem we use our generalization of the theorem of Delyon and Delyon to show that $\bar{\Omega}$ is K-spectral for T.

Resolvent estimates and similarity to a normal

- T an operator with $\sigma(T) \subset \Gamma$, where Γ is a smooth curve without self-intersections.
- It holds that $\left\|(T-\lambda I)^{-1}\right\| \leq \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every λ in a neighbourhood of Γ if and only if T is normal (Stampfli, 1965).
- If T is similar to a normal $\left(V T V^{-1}\right.$ is normal), then $\left\|(T-\lambda /)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$. The converse is false: Markus (1964), Benamara-Nikolski (1999), Nikolski-Treil (2002).

Theorem

If Ω is a $C^{1+\alpha}$ Jordan domain, $\Gamma=\partial \Omega, U$ is a neighbourhood of Γ and

$$
\begin{aligned}
& \left\|(T-\lambda I)^{-1}\right\| \leq \operatorname{dist}(\lambda, \Gamma)^{-1}, \quad \lambda \in U \backslash \bar{\Omega}, \\
& \left\|(T-\lambda I)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}, \quad \lambda \in \Omega,
\end{aligned}
$$

then T is similar to a normal.
The two growth conditions can be interchanged.
In the proof of this theorem we use our generalization of the theorem of Delyon and Delyon to show that $\bar{\Omega}$ is K-spectral for T.

Generalization of a theorem of van Casteren

Ω a $C^{1+\alpha}$ Jordan domain, $\Gamma=\partial \Omega .\left\{\gamma_{s}\right\}_{0<s<1}$ is a family of curves that tends nicely to Γ (when $s \rightarrow 0$) if:
(1) $C^{-1} s \leq \operatorname{dist}(x, \Gamma) \leq C s, \quad x \in \gamma_{s}$
(2) long $\left(\gamma_{s} \cap B(x, r)\right) \leq C r$

If $\gamma_{s} \subset \mathbb{C} \backslash \bar{\Omega}$ for every s, we say that $\left\{\gamma_{s}\right\}$ tends nicely to Γ from the outside.
Theorem (Generalization of van Casteren)
If $\left\|(T-\lambda)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every $\lambda \in \Omega$ and

for some family of curves $\left\{\gamma_{s}\right\}_{0<s<1}$ which tends nicely to Γ from the outside, then T is similar to a normal.

The case $\Omega=\mathbb{D}, \gamma_{s}=\{z \in \mathbb{C}:|z|=1+s\}$ is due to van Casteren (1984).

Generalization of a theorem of van Casteren

Ω a $C^{1+\alpha}$ Jordan domain, $\Gamma=\partial \Omega .\left\{\gamma_{s}\right\}_{0<s<1}$ is a family of curves that tends nicely to Γ (when $s \rightarrow 0$) if:
(1) $C^{-1} s \leq \operatorname{dist}(x, \Gamma) \leq C s, \quad x \in \gamma_{s}$
(2) long $\left(\gamma_{s} \cap B(x, r)\right) \leq C r$

If $\gamma_{s} \subset \mathbb{C} \backslash \bar{\Omega}$ for every s, we say that $\left\{\gamma_{s}\right\}$ tends nicely to Γ from the outside.
Theorem (Generalization of van Gasteren)
If $\left\|(T-\lambda I)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every $\lambda \in \Omega$ and
for some family of curves $\left\{\gamma_{s}\right\}_{0<s<1}$ which tends nicely to Γ from the outside, then T is similar to a normal.

The case $\Omega=\mathbb{D}, \gamma_{s}=\{z \in \mathbb{C}:|z|=1+s\}$ is due to van Casteren (1984).

Generalization of a theorem of van Casteren

Ω a $C^{1+\alpha}$ Jordan domain, $\Gamma=\partial \Omega .\left\{\gamma_{s}\right\}_{0<s<1}$ is a family of curves that tends nicely to Γ (when $s \rightarrow 0$) if:
(1) $C^{-1} s \leq \operatorname{dist}(x, \Gamma) \leq C s, \quad x \in \gamma_{s}$
(2) long $\left(\gamma_{s} \cap B(x, r)\right) \leq C r$

If $\gamma_{s} \subset \mathbb{C} \backslash \bar{\Omega}$ for every s, we say that $\left\{\gamma_{s}\right\}$ tends nicely to Γ from the outside.

Theorem (Generalization of van Casteren)

If $\left\|(T-\lambda /)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every $\lambda \in \Omega$ and

$$
\begin{aligned}
& \int_{\gamma_{s}}\left\|(T-\lambda I)^{-1} x\right\|^{2}|d \lambda| \leq C\|x\|^{2} s^{-1} \\
& \int_{\gamma_{s}}\left\|\left(T^{*}-\bar{\lambda} I\right)^{-1} x\right\|^{2}|d \lambda| \leq C\|x\|^{2} s^{-1}
\end{aligned}
$$

for some family of curves $\left\{\gamma_{s}\right\}_{0<s<1}$ which tends nicely to Γ from the outside, then T is similar to a normal.

The case $\Omega=\mathbb{D}, \gamma_{s}=\{z \in \mathbb{C}:|z|=1+s\}$ is due to van Casteren (1984).

Generalization of a theorem of van Casteren

Ω a $C^{1+\alpha}$ Jordan domain, $\Gamma=\partial \Omega .\left\{\gamma_{s}\right\}_{0<s<1}$ is a family of curves that tends nicely to Γ (when $s \rightarrow 0$) if:
(1) $C^{-1} s \leq \operatorname{dist}(x, \Gamma) \leq C s, \quad x \in \gamma_{s}$
(2) long $\left(\gamma_{s} \cap B(x, r)\right) \leq C r$

If $\gamma_{s} \subset \mathbb{C} \backslash \bar{\Omega}$ for every s, we say that $\left\{\gamma_{s}\right\}$ tends nicely to Γ from the outside.

Theorem (Generalization of van Casteren)

If $\left\|(T-\lambda /)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$ for every $\lambda \in \Omega$ and

$$
\begin{aligned}
& \int_{\gamma_{s}}\left\|(T-\lambda I)^{-1} x\right\|^{2}|d \lambda| \leq C\|x\|^{2} s^{-1} \\
& \int_{\gamma_{s}}\left\|\left(T^{*}-\bar{\lambda} I\right)^{-1} x\right\|^{2}|d \lambda| \leq C\|x\|^{2} s^{-1}
\end{aligned}
$$

for some family of curves $\left\{\gamma_{s}\right\}_{0<s<1}$ which tends nicely to Γ from the outside, then T is similar to a normal.

The case $\Omega=\mathbb{D}, \gamma_{s}=\{z \in \mathbb{C}:|z|=1+s\}$ is due to van Casteren (1984).

Tools

Pseudoanalytic extension: If $f \in C^{1+\alpha}(\Gamma)$, then there exists $F \in C^{1}(\mathbb{C})$ such that $F \mid \Gamma=f$ and $|\bar{\partial} F(z)| \leq C\|f\|_{C^{1+\alpha}} \operatorname{dist}(z, \Gamma)^{\alpha}$.

Dynikin's functional calculus: If $\left\|(T-\lambda /)^{-1}\right\| \leq C \operatorname{dist}(\lambda, \Gamma)^{-1}$, we can define $f(T)$ for $f \in C^{1+\alpha}(\Gamma)$ by

$$
f(T)=\frac{1}{2 \pi i} \int_{\partial D} F(\lambda)(\lambda I-T)^{-1} d \lambda-\frac{1}{\pi} \iint_{D} \bar{\partial} F(\lambda)(\lambda I-T)^{-1} d A(\lambda),
$$

where F is any pseudoanalytic extension of f and $D \supset \Gamma$ is a domain.

Outline

(1) Part I: Test functions and K-spectral sets

- Test collections
- Subalgebras of analytic functions
- An application: operators with spectra on a curve
(2) Part II: Separating structures and operator tuples
- Separating structures
- Vessels and generalized compression

Separating structures

Definition

A separating structure is a Hilbert space K, a pair of commuting selfadjoint operators $A_{1}, A_{2} \in \mathcal{B}(K)$ and an orthogonal decomposition

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}},
$$

with $\operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$ such that A_{1}, A_{2} have the structure

$$
A_{j}=\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & \Lambda_{-1} & R_{-1} & 0 \\
0 & T_{0} & \Lambda_{0} & * \\
0 & 0 & * & *
\end{array}\right], \quad j=1,2 .
$$

Usually we work with the normal operator $N=A_{1}+i A_{2}$ instead of the pair A_{1}, A_{2}.
The finite dimensional space $M=M_{-} \oplus M_{+}$is used to characterize the behaviour of the separating structure using some auxiliary matrices (which are built using $\left.\wedge_{-1}, \wedge_{0}, \Omega_{-1}, T_{0}\right)$.

Separating structures

Definition

A separating structure is a Hilbert space K, a pair of commuting selfadjoint operators $A_{1}, A_{2} \in \mathcal{B}(K)$ and an orthogonal decomposition

$$
K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}},
$$

with $\operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$ such that A_{1}, A_{2} have the structure

$$
A_{j}=\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & \Lambda_{-1} & R_{-1} & 0 \\
0 & T_{0} & \Lambda_{0} & * \\
0 & 0 & * & *
\end{array}\right], \quad j=1,2 .
$$

Usually we work with the normal operator $N=A_{1}+i A_{2}$ instead of the pair A_{1}, A_{2}.
The finite dimensional space $M=M_{-} \oplus M_{+}$is used to characterize the behaviour of the separating structure using some auxiliary matrices (which are built using $\left.\Lambda_{-1}, \Lambda_{0}, R_{-1}, T_{0}\right)$.

An example: subnormal operators of finite type (following Xia and Yakubovich)

$S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H$, with $N \in \mathcal{B}(K)$ normal, $K \supset H$. S is pure subnormal if there is no non-trivial subspace H_{0} which reduces S and such that $S \mid H_{0}$ is normal.

If S is pure subnormal, it has a minimal normal extension:

S is subnormal of finite type if its selfcommutator $C=S^{*} S-S S^{*}$ has finite rank. If S is pure subnormal of finite type,

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$A_{1}=\operatorname{Re}\left(a N+b N^{*}\right), A_{2}=\operatorname{Im}\left(a N+b N^{*}\right)$ form a separating structure $(a, b \in \mathbb{C})$

An example: subnormal operators of finite type (following Xia and Yakubovich)

$S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H$, with $N \in \mathcal{B}(K)$ normal, $K \supset H$.
S is pure subnormal if there is no non-trivial subspace H_{0} which reduces S and such that $S \mid H_{0}$ is normal.

If S is pure subnormal, it has a minimal normal extension: $N=\left[\begin{array}{cc}S^{* *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if its selfcommutator $C=S^{*} S-S S^{*}$ has finite rank. If S is pure subnormal of finite type,

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$A_{1}=\operatorname{Re}\left(a N+b N^{*}\right), A_{2}=\operatorname{Im}\left(a N+b N^{*}\right)$ form a separating structure $(a, b \in \mathbb{C})$

An example: subnormal operators of finite type (following Xia and Yakubovich)

$S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H$, with $N \in \mathcal{B}(K)$ normal, $K \supset H$.
S is pure subnormal if there is no non-trivial subspace H_{0} which reduces S and such that $S \mid H_{0}$ is normal.

If S is pure subnormal, it has a minimal normal extension: $N=\left[\begin{array}{cc}S^{\prime *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if its selfcommutator $C=S^{*} S-S S^{*}$ has finite rank.
If S is pure subnormal of finite type,

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$A_{1}=\operatorname{Re}\left(a N+b N^{*}\right), A_{2}=\operatorname{Im}\left(a N+b N^{*}\right)$ form a separating structure $(a, b \in \mathbb{C})$

An example: subnormal operators of finite type (following Xia and Yakubovich)

$S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H$, with $N \in \mathcal{B}(K)$ normal, $K \supset H$.
S is pure subnormal if there is no non-trivial subspace H_{0} which reduces S and such that $S \mid H_{0}$ is normal.

If S is pure subnormal, it has a minimal normal extension: $N=\left[\begin{array}{cc}S^{\prime *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if its selfcommutator $C=S^{*} S-S S^{*}$ has finite rank. If S is pure subnormal of finite type,

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,+},
$$

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$$
N=\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & \Lambda_{-1} & 0 & 0 \\
0 & T_{0} & \Lambda_{0} & * \\
0 & 0 & * & *
\end{array}\right] .
$$

$A_{1}=\operatorname{Re}\left(a N+b N^{*}\right), A_{2}=\operatorname{Im}\left(a N+b N^{*}\right)$ form a separating structure $(a, b \in \mathbb{C})$

An example: subnormal operators of finite type (following Xia and Yakubovich)

$S \in \mathcal{B}(H)$ is subnormal if $S=N \mid H$, with $N \in \mathcal{B}(K)$ normal, $K \supset H$.
S is pure subnormal if there is no non-trivial subspace H_{0} which reduces S and such that $S \mid H_{0}$ is normal.

If S is pure subnormal, it has a minimal normal extension: $N=\left[\begin{array}{cc}S^{\prime *} & 0 \\ X & S\end{array}\right]$.
S is subnormal of finite type if its selfcommutator $C=S^{*} S-S S^{*}$ has finite rank. If S is pure subnormal of finite type,

$$
K=H_{0,-} \oplus M_{-} \oplus M_{+} \oplus H_{0,+},
$$

with $M_{+}=C H, \operatorname{dim} M_{-}=\operatorname{dim} M_{+}<\infty$, and

$$
N=\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & \Lambda_{-1} & 0 & 0 \\
0 & T_{0} & \Lambda_{0} & * \\
0 & 0 & * & *
\end{array}\right]
$$

$A_{1}=\operatorname{Re}\left(a N+b N^{*}\right), A_{2}=\operatorname{Im}\left(a N+b N^{*}\right)$ form a separating structure $(a, b \in \mathbb{C})$.

Discriminant curve

We define auxiliary matrices $\alpha, \gamma \in \mathcal{B}(M)$ by

$$
\alpha=\left[\begin{array}{cc}
0 & -R_{-1} \\
T_{0} & 0
\end{array}\right], \quad s=P_{M} N \left\lvert\, M=\left[\begin{array}{cc}
\Lambda_{-1} & R_{-1} \\
T_{0} & \Lambda_{0}
\end{array}\right]\right., \quad \gamma=-\left(\alpha^{*} s+\alpha s^{*}\right) .
$$

Then

$$
\alpha^{*} P_{M} N+\alpha P_{M} N^{*}+\gamma=0 .
$$

This motivates the definition of the discriminant curve:

$$
X=\left\{(z, w) \in \mathbb{C}^{2}: \operatorname{det}\left(z \alpha^{*}+w \alpha+\gamma\right)=0\right\} .
$$

We have $\sigma(N) \subset\{z \in \mathbb{C}:(z, \bar{z}) \in X\}$.

Mosaic function

It is a generalization of the mosaic function defined by Xia for subnormal operators.

Definition

The mosaic function ν is

$$
\nu(z)=P_{M}(N-z)^{-1} P_{H_{+}}(N-z) \mid M, \quad z \notin \sigma(N)
$$

Its values are parallel projections in M.
The auxiliary matrices α, γ and the mosaic function ν contain all the information about the separating structure.
If $m_{1}, m_{2} \in M y z, w \notin \sigma(N)$, then
$\left\langle\left(N^{*}-\bar{W}\right)^{-1} m_{1},\left(N^{*}-\bar{z}\right)^{-1} m_{2}\right\rangle=\left\langle\left(\gamma+z \alpha^{*}+w \alpha\right)^{-1}\left(I-\alpha \nu(z) \alpha^{-1}-\nu(w)^{*}\right) m_{1}, m_{2}\right.$
In non-degenerate cases, the linear span of the vectors $\left(N^{*}-\bar{z}\right)^{-1} m$, with $m \in M$, $z \notin \sigma(N)$, is dense in K. Hence, we can recover the scalar product in K.

Question: Is it possible to recover the mosaic function ν from the matrices α and γ ? In this case, the separating structure (which contains infinite-dimensional objects) comes determined by a finite-dimensional amount of data.

Mosaic function

It is a generalization of the mosaic function defined by Xia for subnormal operators.

Definition

The mosaic function ν is

$$
\nu(z)=P_{M}(N-z)^{-1} P_{H_{+}}(N-z) \mid M, \quad z \notin \sigma(N)
$$

Its values are parallel projections in M.
The auxiliary matrices α, γ and the mosaic function ν contain all the information about the separating structure.
If $m_{1}, m_{2} \in M y z, w \notin \sigma(N)$, then

$$
\left\langle\left(N^{*}-\bar{w}\right)^{-1} m_{1},\left(N^{*}-\bar{z}\right)^{-1} m_{2}\right\rangle=\left\langle\left(\gamma+z \alpha^{*}+w \alpha\right)^{-1}\left(I-\alpha \nu(z) \alpha^{-1}-\nu(w)^{*}\right) m_{1}, m_{2}\right\rangle
$$

In non-degenerate cases, the linear span of the vectors $\left(N^{*}-\bar{z}\right)^{-1} m$, with $m \in M$, $z \notin \sigma(N)$, is dense in K. Hence, we can recover the scalar product in K.

Question: Is it possible to recover the mosaic function ν from the matrices α and γ ? In this case, the separating structure (which contains infinite-dimensional objects) comes determined by a finite-dimensional amount of data.

Mosaic function

It is a generalization of the mosaic function defined by Xia for subnormal operators.

Definition

The mosaic function ν is

$$
\nu(z)=P_{M}(N-z)^{-1} P_{H_{+}}(N-z) \mid M, \quad z \notin \sigma(N)
$$

Its values are parallel projections in M.
The auxiliary matrices α, γ and the mosaic function ν contain all the information about the separating structure.
If $m_{1}, m_{2} \in M y z, w \notin \sigma(N)$, then

$$
\left\langle\left(N^{*}-\bar{w}\right)^{-1} m_{1},\left(N^{*}-\bar{z}\right)^{-1} m_{2}\right\rangle=\left\langle\left(\gamma+z \alpha^{*}+w \alpha\right)^{-1}\left(I-\alpha \nu(z) \alpha^{-1}-\nu(w)^{*}\right) m_{1}, m_{2}\right\rangle .
$$

In non-degenerate cases, the linear span of the vectors $\left(N^{*}-\bar{z}\right)^{-1} m$, with $m \in M$, $z \notin \sigma(N)$, is dense in K. Hence, we can recover the scalar product in K.

Question: Is it possible to recover the mosaic function ν from the matrices α and γ ? In this case, the separating structure (which contains infinite-dimensional objects) comes determined by a finite-dimensional amount of data.

The meromorphic function Q

We put

$$
\Sigma=-\alpha^{-1} \alpha^{*}, \quad D=-\alpha^{-1} \gamma
$$

The equation of the curve X rewrites as

$$
\operatorname{det}(z \Sigma+D-w l)=0 .
$$

If $p=(z, w) \in X$, we put

$$
Q(p)=\Pi_{w}(z \Sigma+D)=\frac{1}{2 \pi i} \int_{|\lambda-w|=\varepsilon}(z \Sigma+D-\lambda l)^{-1} d \lambda
$$

the Riesz projection of $z \Sigma+D$ associated with the eigenvalue w.
Then $Q(p)$ is a parallel projection in M and for every z_{0}

$$
\sum_{p=\left(z_{0}, w\right) \in X} Q(p)=I_{M} .
$$

Q is a meromorphic function on X (we understand X as a finite union of Riemann surfaces, using the blow up).

Restoration formula

The algebraic curve X is a real curve and it comes equipped with a complex conjugation. We say that it is separated if its real part $X_{\mathbb{R}}$ divides the curve into two halves (which are exchanged by the complex conjugation).

The matrix Σ has the form

Theorem (Restoration formula)

If $\sigma\left(\Sigma^{-}\right) \cap \sigma\left(\Sigma^{+}\right)=\emptyset$ then the discriminant curve X is separated, and for every z_{0},

Restoration formula

The algebraic curve X is a real curve and it comes equipped with a complex conjugation. We say that it is separated if its real part $X_{\mathbb{R}}$ divides the curve into two halves (which are exchanged by the complex conjugation).

The matrix Σ has the form

$$
\Sigma=\left[\begin{array}{cc}
\Sigma^{-} & 0 \\
0 & \Sigma^{+}
\end{array}\right] .
$$

Theorem (Restoration formula)

If $\sigma\left(\Sigma^{-}\right) \cap \sigma\left(\Sigma^{+}\right)=\emptyset$, then the discriminant curve X is separated, $X=X_{-} \cup X_{\mathbb{R}} \cup X_{+}$, and for every z_{0},

$$
\nu\left(z_{0}\right)=\sum_{p=\left(z_{0}, w\right) \in X_{+}} Q(p) .
$$

Outline

(9) Part I: Test functions and K-spectral sets

- Test collections
- Subalgebras of analytic functions
- An application: operators with spectra on a curve
(2) Part II: Separating structures and operator tuples
- Separating structures
- Vessels and generalized compression

Vessels

A theory developed by Livšic, Vinnikov and others.
We start with two commuting operators $B_{1}, B_{2} \in \mathcal{B}(H)$ which have finite-dimensional imaginary part. We put

$$
M=\left(B_{1}-B_{1}^{*}\right) H+\left(B_{2}-B_{2}^{*}\right) H .
$$

We define selfadjoint auxiliary matrices in M :

$$
\left.\sigma_{j}=\frac{1}{i}\left(B_{j}-B_{j}^{*}\right) \right\rvert\, M, \quad j=1,2,
$$

and $\gamma^{\text {in }}, \gamma^{\text {out }}$.
We define the discriminant polynomial
$\Delta\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {in }}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {out }}\right)$
and the discriminant curve

We have $\sigma\left(B_{1}, B_{2}\right) \subset X$.

Vessels

A theory developed by Livšic, Vinnikov and others.
We start with two commuting operators $B_{1}, B_{2} \in \mathcal{B}(H)$ which have finite-dimensional imaginary part. We put

$$
M=\left(B_{1}-B_{1}^{*}\right) H+\left(B_{2}-B_{2}^{*}\right) H .
$$

We define selfadjoint auxiliary matrices in M :

$$
\left.\sigma_{j}=\frac{1}{i}\left(B_{j}-B_{j}^{*}\right) \right\rvert\, M, \quad j=1,2
$$

and $\gamma^{\text {in }}, \gamma^{\text {out }}$.
We define the discriminant polynomial

$$
\Delta\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {in }}\right)=\operatorname{det}\left(x_{1} \sigma_{2}-x_{2} \sigma_{1}+\gamma^{\text {out }}\right)
$$

and the discriminant curve

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}: \Delta\left(x_{1}, x_{2}\right)=0\right\}
$$

We have $\sigma\left(B_{1}, B_{2}\right) \subset X$.

Recall: Compression and dilation

If $A \in \mathcal{B}(K), K$ decomposes as

$$
K=G_{-} \oplus H \oplus G_{+}
$$

and A has the structure

$$
A=\left[\begin{array}{lll}
* & 0 & 0 \\
* & B & 0 \\
* & * & *
\end{array}\right],
$$

then B is called a compression of A and A is called a dilation of B.
For every polynomial p,

$$
p(A)=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & p(B) & 0 \\
* & * & *
\end{array}\right] .
$$

Every contraction can be dilated to a unitary. Using this one can prove von Neumann's inequality in a simple manner.

Remark: G_{+}and $H \oplus G_{+}$are invariant for A.

Recall: Compression and dilation

If $A \in \mathcal{B}(K), K$ decomposes as

$$
K=G_{-} \oplus H \oplus G_{+}
$$

and A has the structure

$$
A=\left[\begin{array}{lll}
* & 0 & 0 \\
* & B & 0 \\
* & * & *
\end{array}\right],
$$

then B is called a compression of A and A is called a dilation of B.
For every polynomial p,

$$
p(A)=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & p(B) & 0 \\
* & * & *
\end{array}\right] .
$$

Every contraction can be dilated to a unitary. Using this one can prove von Neumann's inequality in a simple manner.

Remark: G_{+}and $H \oplus G_{+}$are invariant for A.

Dilation and compression of tuples of operators

Single operator

$$
\begin{aligned}
& \text { Spectral theory of contractions of Sz.- } \\
& \text { Nagy and Foias. } \\
& B \in \mathcal{B}(H),\|B\| \leq 1 \\
& \text { dilation } \| \llbracket \text { compression }
\end{aligned}
$$

Spectral theory of isometries. Functional model over $H^{2}(\mathbb{D})$ (vector valued).
A isometry/unitary.

Tuples of operators

Livšic-Vinnikov theory.
$B_{1}, B_{2}, \operatorname{dim} \operatorname{Im} B_{j}<\infty$
dilation |compression
Separating structures. (Functional model over H^{2} of the halves of the discriminant curve).
A_{1}, A_{2} selfadjoint.

Compression of separating structures

$A_{1}, A_{2}: K \rightarrow K$ selfadjoint. Two separating structures for A_{1}, A_{2}

$$
\omega: K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \quad \widehat{\omega}: K=\overbrace{\widehat{H}_{0,-} \oplus \widehat{M}_{-}}^{\hat{H}_{-}} \oplus \overbrace{\widehat{M}_{+} \oplus \widehat{H}_{0,+}}^{\hat{H}_{+}} .
$$

We assume that these structures are subordinate $(\widehat{\omega} \prec \omega)$, which means that

$$
\widehat{H}_{+} \subset H_{+} \quad\left(\Longleftrightarrow H_{-} \subset \widehat{H}_{-}\right)
$$

This is a partial order relation.
We define a notion of generalized compression (where no subspace is required to be invariant).

Lemma

The operators A_{1}, A_{2} can be compressed to H_{+} / \widehat{H}_{+}if and only if the matrix $P_{M_{+}} \mid \widehat{M}_{+}: \widehat{M}_{+} \rightarrow M_{+}$is invertible.

Theorem

If B_{1}, B_{2} are the generalized compressions of A_{1} and A_{2} to H_{1} / H_{4}, then B_{1}, B_{2} form a vessel and the auxiliary matrices of the vessel $\sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}$ can be written in terms of the auxiliary matrices of the separating structure α, γ in a simple way. In particular, the discriminant curves of the vessel and separating structure coincide.

Compression of separating structures

$A_{1}, A_{2}: K \rightarrow K$ selfadjoint. Two separating structures for A_{1}, A_{2}

$$
\omega: K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \widehat{\omega}: K=\overbrace{\widehat{H}_{0,-} \oplus \widehat{M}_{-}}^{\widehat{H}_{-}} \oplus \overbrace{\widehat{M}_{+} \oplus \widehat{H}_{0,+}}^{\widehat{H}_{+}} .
$$

We assume that these structures are subordinate $(\widehat{\omega} \prec \omega)$, which means that

$$
\widehat{H}_{+} \subset H_{+} \quad\left(\Longleftrightarrow H_{-} \subset \widehat{H}_{-}\right)
$$

This is a partial order relation.
We define a notion of generalized compression (where no subspace is required to be invariant).

Lemma

The operators A_{1}, A_{2} can be compressed to H_{+} / \widehat{H}_{+}if and only if the matrix $P_{M_{+}} \mid \widehat{M}_{+}: \widehat{M}_{+} \rightarrow M_{+}$is invertible.

Theorem

If B_{1}, B_{2} are the generalized compressions of A_{1} and A_{2} to H_{+} / \widehat{H}_{+}, then B_{1}, B_{2} form a vessel and the auxiliary matrices of the vessel $\sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}$ can be written in terms of the auxiliary matrices of the separating structure α, γ in a simple way. In particular, the discriminant curves of the vessel and separating structure coincide.

Compression of separating structures

$A_{1}, A_{2}: K \rightarrow K$ selfadjoint. Two separating structures for A_{1}, A_{2}

$$
\omega: K=\overbrace{H_{0,-} \oplus M_{-}}^{H_{-}} \oplus \overbrace{M_{+} \oplus H_{0,+}}^{H_{+}}, \widehat{\omega}: K=\overbrace{\widehat{H}_{0,-} \oplus \widehat{M}_{-}}^{\hat{H}_{-}} \oplus \overbrace{\widehat{M}_{+} \oplus \widehat{H}_{0,+}}^{\hat{H}_{+}} .
$$

We assume that these structures are subordinate ($\widehat{\omega} \prec \omega$), which means that

$$
\widehat{H}_{+} \subset H_{+} \quad\left(\Longleftrightarrow H_{-} \subset \widehat{H}_{-}\right)
$$

This is a partial order relation.
We define a notion of generalized compression (where no subspace is required to be invariant).

Lemma

The operators A_{1}, A_{2} can be compressed to H_{+} / \widehat{H}_{+}if and only if the matrix $P_{M_{+}} \mid \widehat{M}_{+}: \widehat{M}_{+} \rightarrow M_{+}$is invertible.

Theorem

If B_{1}, B_{2} are the generalized compressions of A_{1} and A_{2} to H_{+} / \widehat{H}_{+}, then B_{1}, B_{2} form a vessel and the auxiliary matrices of the vessel $\sigma_{1}, \sigma_{2}, \gamma^{\text {in }}, \gamma^{\text {out }}$ can be written in terms of the auxiliary matrices of the separating structure α, γ in a simple way. In particular, the discriminant curves of the vessel and separating structure coincide.

List of articles

M. A. Dritschel, D. Estévez and D. Yakubovich, Traces of analytic uniform algebras on subvarieties and test collections, J. London Math. Soc. 95 (2017), no. 2, 414-440.
M. A. Dritschel, D. Estévez and D. Yakubovich, Tests for complete K-spectral sets, accepted in J. Funct. Anal.; preprint available at arXiv:15010.08350.
俥 M. A. Dritschel, D. Estévez and D. Yakubovich, Linear resolvent growth for operators with spectra on a curve and their similarity to normals, preprint available at arXiv:1704.08135.

