Reverse Engineering Outernet:

a look to the past and future

Dr. Daniel Estévez

3 March 2018
FAQin 2018, Madrid

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

0 Introduction

e L-band service: modulation and coding (from RF to frames)
e L-band service: network protocols (from frames to files)

e Some other fun stuff | did

© Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 2/45

0 Introduction

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 3/45

What is Outernet?

@ Startup company with goal of easing worldwide Internet access by broadcasting
content from satellites

@ Aims for almost worldwide coverage
@ August 2014. Started broadcasting on Ku-band (11GHz) DTH satellites using DVB-S

@ May 2016. Switched to narrowband broadcasts on L-band (1.5GHz) through 3
Inmarsat satellites (Americas, Europe/Africa, Asia/Pacific)

@ January 2018. L-band service terminated

@ Future narrowband Ku-band service. Currently some intermittent tests over North
America

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 4/45

Data rates & receiving equipment

@ Ku-band DVB-S
o Typically 27.5Mbaud QPSK (or higher order PSK). Multiplex shared with TV channels
and other services
e 90kbps data service inside the multiplex
e Spot beams. Regional coverage per beam
e Parabolic dish, LNB, DVB-S set-top-box or dongle

@ L-band single-service channel
o 4.2kbaud BPSK. Only gives 15MB/day
o Global beam. 1/3rd Earth coverage per satellite
e Patch antenna, LNA, SDR dongle (RTL-SDR)
@ Ku-band single-service channel
@ 30-100kbps service claimed
o Typically spot beams
@ No dish claimed (maybe?), LNB, SDR dongle (RTL-SDR)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

Outernet’s “business” model

@ Anyone can receive Outernet for free. Receiver software can be downloaded from
Outernet’s web site

@ Most of the software is open-source, but the key components are closed-source and
the signal coding and protocols are not public

@ Outernet sells receiver hardware kits, but you can also make your own using
off-the-shelf components

@ Some people wonder how Outernet manages to make any money. Maybe they live
off investors

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 6/45

Reverse engineering Outernet L-band service

@ In October 2016 | reverse-engineered the L-band service almost completely

@ This work was presented in the 33th Chaos Communication Congress in December
2016

@ In January 2017, George Hopkins figured out the last missing details

@ The L-band service is now completely documented and a fully functional
open-source receiver is available

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 7145

Reverse engineering Outernet L-band service

@ In October 2016 | reverse-engineered the L-band service almost completely
@ This work was presented in the 33th Chaos Communication Congress in December
2016
@ In January 2017, George Hopkins figured out the last missing details
@ The L-band service is now completely documented and a fully functional
open-source receiver is available
@ Why reverse engineer Outernet?
o A secret protocol and closed-source software don’t serve well the goal of easing
worldwide Internet access
o Amateur Radio operators started playing with Outernet. Closed-source and secret
protocols detrimental for Amateur Radio
@ Things | knew before starting:
e RF goes in, files come out. About 2kbps bitrate or 20MB of content per day
@ outernet-linux-1lband closed-source software (Older version for Linux x86_64.
Now everything is for ARM): sdr100-1.0.4, SDR modem for RTL-SDR; ondd-2.2.0,
does everything else
o 1Q recordings by Scott Chapman K4KDR

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 7145

e L-band service: modulation and coding (from RF to frames)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 8/45

Waterfall in Linrad

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 9/45

Modulation

@ 4.8kHz wide
@ Looks like a hump in the noise floor

@ “Any sufficiently advanced communication scheme is indistinguishable from noise” —
Phil Karn KA9Q

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 10/45

Modulation

@ 4.8kHz wide
@ Looks like a hump in the noise floor

@ “Any sufficiently advanced communication scheme is indistinguishable from noise” —
Phil Karn KA9Q

@ We suspect PSK modulation. BPSK and QPSK are good candidates
@ We use GNU Radio for signal processing. First step: find out PSK order and baudrate

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 10/45

Reading from IQ wav file in GNU Radio

Wav File source [J}—] T Frequency Xlating FIR Filter
File: . t-kakdr-airspy wav Float To Complex [} Decimation: 25
Sampl 625k I
Repeat: Yes = il Taps: firdes.low_passL, 6... QT GUI Frequency Sink

Center Frequency: 3.5k FFT Size: 4.096k
Center Frequency (Hz): 0

Sample Rate: 625k I -
Bandwidth (Hz): 25k
Low Pass Filter
Decimation: 1
Gain; 1
| e
Cutoff Freq: 2.4k

Tr n Width: 500
Window: Hamming
Beta: 6.76

4

/=

. Daniel Estévez Reverse Engineering Outernet FAQin 2018 11/45

PSK order

Raise the signal to integer powers

Yy

Low Pass Filter
Decimation: 1 1 QT GUI Frequency Sink
Gain: 1 Multiply FFT Size: 4096k
Sample Rate: 25k 1 Center Frequency {Hz): 0
B ciorrreqioak Bandwidth (Hz): 25k
Transition Width: 500
Window: Hamming

Beta: 6.76

Power 2 of the signal has DC spike = BPSK
For QPSK, we would need to go to 4th power

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 12/45

Baudrate
Cyclostationary analysis
T T T
: rrl " e

Delay: 1

42000z

L WWMM MWMM,%J
/ |

Baudrate is 4200baud

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 13/45

BPSK demodulation

QT GUI Constellation Sink
Low Pass Filter yp Clock Sync » costastoop [—m]l| Number of Points: 1k
Decimation: 1 Samples/Symbol: 5.95238 Loop Bandwidth: 50m Autoscale: No
Gami Eaon Bancutatn: 100 Craaris
g ey] min I
Cutoff Freq: 24k Reference: 2 ize: 32
Transition wath: 500 o Phaser 15
Window: Hamming laximum Rate Deviation: 100m
s Output 35311
Variabie varants | [avcuienty || et cureniy a7 U Enery
10 et winis | | 10:aoha 10l o iy
Vataesfrdes oot raisa .| |Vt 32 | | Dafaah Vatues 350m | | Defaui vaues Loom | | Detauts Vatue: 100m
e
E .

Daniel Estévez

verse Engineering Outernet

FAQin 201

@ Baudrate is 4200baud but bitrate is only about 2kbps
@ We suspect r =1/2 FEC in use
@ Most popular choice: r = 1/2, k = 7 convolutional code with CCSDS polynomials

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 15/45

@ Baudrate is 4200baud but bitrate is only about 2kbps

@ We suspect r =1/2 FEC in use

@ Most popular choice: r = 1/2, k = 7 convolutional code with CCSDS polynomials
@ We use Balint Seeber’s AutoFEC to find FEC parameters

@ “Standard” CCSDS convolutional code, but with the two polynomials swapped

@ We use GNU Radio Viterbi decoder to decode FEC

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 15/45

Viterbi decoding

QT GUI Time Raster Sink

Packed to Unpacked N
‘ Decode CCSDS 27 h—. Bits per Chunk: 1 1 f.:':."';.':.'.'-’iuzu“
MSE o g

Num. Cols: 1.05k

QT GUI Time Raster Sink
Packed to Unpacked ©
D'::;_"l ‘ Decode CCSDS 27 h—» Bits per Chunk: 1 | ;:1"::::_‘1';““
Mse Num. Cols: 1.05k
: s 7 " r =

AT

E 0s 3
s
3
o
w e
2 02
o
0t) 15048 271 2095 619
)
73
31
&
3
o
s
2

000 9520 19048 P 305 ar619
Time (ms)

Output looks random = we need a descrambler

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 16/45

Descrambler

@ The most popular descramblers | knew of didn’t work
@ Reverse engineer the assembler code for the descrambler in sdr100

[d000000000406980 <descranbLer 308
406980: 85 16

uintsz_t shft_state
sesi, sesi

406962 Jne 408500 <descranblersoproros

406984 7f 20 00 0x207fc2(%rip) % # 60e94c <shft_state.1868>
406982 7f 20 00 0207 TbB(rip) Aes # 602948 <advst_cntr.1862>
406950

406992

uint32_t descrambler3os(uint32_t inbit, uint3zt reset) {
if (reset) {
shft state
advst_cntr
outhit = 0,

return 0;
g0x1f, sesi b

sal

0x13,%red as_det = advst_cntr == Ox1f;
seax, 0620778 (%srip) 602940 <as_det.1865>

outbit = ~(inbit ~ as_det ~ shft_state ~ (shft_state >> 17)) & 1;
i (((shft_state »> 19) ~

(shft_state > 11)) & 1) {
advst_cntr =

advst_cntres
advst_cntr &= 0x1f;

%eax, 0207178 (%srip) 606944
406910 <descranbler308+0x70>
$0x0, 0x207 70 (%r1p) # 602948

<outbit.1863>

<advst_cntr.1862> shft_state »»=
i (Tnbit) {
seedlx shft_state |= 1 << 18;
, ¥
msaooozvdx) Jssecx
ssecx, %ed
e, 0x207161 (urip)

return outbit;
60294c }

0x0(%rax)

90x wes

30x1f %

Nesi, bx207fac (urip)

4osgds pbES

cax
$oxd, 0x207f42(krip) # 60e0ac

602948 <advst_cntr.1862>

<shft_state. 1868>

$0x0, 0x207 34 (5rip) # 600048 <advst_cntr. 1862>

$0x0, 0x207F24 (%rip) 602944 <outbit.1863>

sics:0x0(%rax, %rax, 1)

0x0(%srax, srax, 1)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 17 /45

I[ESS-308 scrambler

It turns out the scrambler is V.35, used in the IESS-308 standard, very popular in GEO
satellite comms, but mostly unheard of in Amateur LEO satellites

Sbit Synchronous

Counter 5 bit Synchronous Counter
Q RESET | ENABLE | CK Qn
exasLy
Lo Q1 1 1 ? COUNT
Q2 0 x t 0
—— T2« Q L L t o
RESET | § Q4
—
o h 3 2 b 3 o Py
RES RES RES RES Q RES RES RES
b D Q D Q D Q D Q D Q D Q °7

o Tod [T oo oo T | (oo T Moo T [0 T [Tk @
STAGE 1 STAGE 2 STAGE 3 STAGE 48 STAGE 9 STAGE 10-19 STAGE 20
>

> ’V
CLOCK INPUT
SCRAMBLER BDOj SCRAMBLED DATA/
S j DESCRAMBLER R DATA OUTPUT

»
AMEL . "D " FLIP_FLOP
CRAMBLED N s o« _
oaaeur | Al plcl s —y . T s . T wl ol
E 1 1 1
ol ’ LUSIVE 0 H Lo | Ao
0 1 0 EXCLUSIVE 0 X x X 0 E h |

1] o NOR x 0 x| x x| o AND 1 A 0

i 0 x| o Ol x| Ao | L

1 M I <o KN

X X X 0 0 0

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

Descrambling

QT GUI Time Raster Sink

Packed to Unpacked .
Decade CCSDS 27 Bite per Chunke 1 IES5-308 descrambler J Somele Rate; 21
= Num, Rows: 100

Num, Cols: 1.05k

QT GUI Time Raster Sink

Packed to Unpacked c
Decode CCSDS 27 Bits per Chunk: 1 IESS-308 descrambler J Samele Rate: 21
1 it Num, Rows: 100

Num. Cols: 1.05k

Ausuayu|

Ausuayuj

000 9524 19048 26571 32095 47619
Time (ms)

Now we can see some structure in the output

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 19/45

@ Several functions in the sdr100 binary have “HDLC” in them
@ We suspect HDLC framing

@ We use the HDLC deframer from gr-satellites (there’s also a stock deframer in
GNU Radio)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 20/45

HDLC deframing

HDLC Deframer
IESS-308 descrambler Check FC5: True]._ , [
Maximum frame length (bytes): 10k

[Message Debug

HDLC Deframer
dm_p Check FCS: True }— —————]
i frame length (bytes): 10k

* MESSAGE DEBUG PRINT PDU VERBOSE *
0

pdu_length = 276

contents =

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 01 04

0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 ba de e0
0020: bc 38 b4 34 e1 f9 74 73 92 fo b8 41 52 db 20 ce
0030: a0 65 f5 c6 9b 66 0c c5 36 42 3¢ 66 fh 69 Oe d8
0040: ca 2d fa 44 5a 57 74 Be 91 6b 98 34 45 51 3fe7
0050: cB a6 08 69 f7 €567 71 cd b7 26 60 0a 03 cd 20
0060: 5d 49 45 88 bd a6 e9 89 87 86 25 3d 9e 83 9a e7
0070: fd 35 73 aa 4e 96 12 8d 1c 16 8f 0f 25 74 a2 12
0080: de bc 03 ¢9 47 57 5a 26 85 b2 a4 a8 be 4b 22 ce
0090: bd f7 3 8a 9d 96 42 4a 25 7e c9 c3 be 64 ab 9d
00a0: b4 14 34 3a 24 4d 8a 40 1a 7e ad e8 Ob d9 Oe Ob
00b0: 8a a9 10 c2 cB 49 7c 69 4c a9 4e 65 53 e6 89 a4
00c0: aa 6b e8 7e ae 78 95 4b f8 96 68 05 17 15 8f 15
00d0: a2 79 0a 3d dd 52 37 86 fa 31 97 b9 d0 2b 1b le
00e0: 79 da 93 0c 02 B1 77 3a 2e 3580 10 74 0f 54 e3
00f0: 86 af cbh c5 8b 38 64 78 de 09 37 9f 3d 3a 64 4e
0100: fe 86 21 7b 8c b1 55 05 5d fd 2a 4a 17 c1 37 69
0110: 5cdl 7b 1c

Daniel Estévez verse Engineering Outernet FAQin 201

e L-band service: network protocols (from frames to files)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 22/45

Reverse engineering frames

@ Techniques used:

@ Look at hex dumps of the frames
e ondd usually gets frames from sdr100 via Unix socket. Inject frames into ondd and see
what happens

@ Outernet uses custom network protocols = | get to name them as | like!

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 23/45

A typical frame

0000: ff f£ff f£ff £f £f £f 00 30 18 cl dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b
0020: 48 2c e0 77 00 86 4d 14 06 3c 24 f£7 30 e7 19 4c
0030: ed 60 d4 44 94 6a 4a 18 34 ad b2 b5 92 01 b7 87
0040: 06 ba 80 61 a5 87 06 80 f6 04 12 f6 d9 12 13 02
0050: 64 0Ob 68 94 21 36 01 ab af 01 50 dO0 13 4b dc b6
0060: 92 90 o6b f4 76 27 73 3d 91 f5 84 3d 75 d9 77 90
0070: d2 74 15 49 66 e5 9a 57 df df 72 28 32 48 97 ed
0080: 9a 46 6e 68 8e 72 b3 54 5f 52 ce f6 f5 de cl fd
0090: e4 e6 f8 a2 bd bb bb 65 cf 9e d0 ed 80 le ad 8c
00a0: Oc b8 59 28 41 cf 27 d3 cf a9 9e 28 06 8e c0 c8
00b0: 42 7a bd ea da ae 7e 41 ee 24 c2 f9 28 b7 35 f6
00cO0: 8b 12 13 23 1f fb 0d 3e 32 49 b9 75 4b 31 d3 29
00d0: 11 cl 48 a2 3b d4 8b 40 e6 2c 69 02 59 f2 f8 c8
00e0: d2 ea aa ce 63 57 ed £7 25 42 8e 9b 21 d4 64 07
00£f0: 89 59 d0 47 d6 7b c7 3c c7 11 2c 91 d3 ca bl 52
0100: ea ba be €3 00 39 fb be 6a 02 52 e3 8f ac ba 30
0110: b7 dl c2 3f

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 24/45

A typical frame

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
00a0:
00b0:
00cO:
00d0:
00e0:
00f0:
0100:
0110:

ff
3c
48
ed
06
64
92
d2
9a
el
Oc
42
8b
11
d2
89
ea
b7

ff
02
2c
60
ba
0b
90
74
46
eb6
b8
Ta
12
cl
ea
59
ba
d1l

ff
00
el
d4
80
68
6b
15
6e
f8
59
bd
13
48
aa
do
be
c2

ff
00
77
44
61
94
f4
49
68
a2
28
ea
23
a2
ce
47
e3
3f

ff
18
00
94
ab
21
76
66
8e
bd
41
da
1f
3b
63
de
00

ff
00
86
6a
87
36
27
eb
72
bb
cf
ae
fb
d4
57
b
39

00
01
4d
4a
06
01
73
9a
b3
bb
27
Te
0od
8b
ed
c’
fb

30
00
14
18
80
ab
3d
57
54
65
d3
41
3e
40
£7
3c
be

18
00
06
34
f6
af
91
df
5f
cf
cf
ee
32
eb
25
c’
6a

cl
00
3c
ad
04
01
£5
df
52
9e
ag
24
49
2¢c
42
11
02

dc
08
24
b2
12
50
84
72
ce
do
9e
c2
b9
69
8e
2c
52

a8
11
£7
b5
fo
do
3d
28
fé
ed
28
f9
75
02
9b
91
e3

8f
10
30
92
do
13
75
32
£5
80
06
28
4b
59
21
d3
8f

ff
eb
e’
01
12
4b
do
48
de
le
8e
b7
31
f2
d4
ca
ac

01
21
19
b7
13
dc
77
97
cl
ad
c0
35
d3
f8
64
bl
ba

04
4b
4c
87
02
b6
90
ed
fd
8c
c8
fé
29
c8
07
52
30

@ Ethernet frame:
e Broadcast
destination
e Source MAC
e Custom ethertype
@ Length: 276 bytes =
aprox. 1 second over
the air (this is
Outernet’'s MTU)

Dr. Daniel Estévez

Reverse Engineering Outernet

FAQin 2018 25/45

L3 protocol: OP

@ OP = “Outernet Protocol” (pun on IP)
@ Handles fragmentation
@ Packet order is preserved = fragmentation is very simple

0000: f£f ff f£f f£f £f £f 00 30 18 cl dc a8 8f f£ff 01 04
0010: 3c 00 00 18 00 01 00 00 00 08 11 10 e5 21 4D

@ OP packet size

@ Fragmentation 3c = last fragment, c3 = fragments remain

) (reverse engineered from ondd by George Hopkins)
@ Fragment number of last fragment

® Fragment number of this fragment

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

L4 protocol: LDP

@ LDP = “Lightweight Datagram Protocol” (pun on UDP)
@ Datagram protocol. Has some sort of port or SID to identify services

0000: ff ff ff ff £f f£f 00 30 18 cl dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b

0110: b7 dl c2 3f

@ Type (port or SID) (0x18 marks a file block)
@ LDP packet size
@ Checksum CRC32-MPEG2 (algorithm found by G. Hopkins)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

Time service packets

@ Time packet broadcast every minute
@ Used to set the receiver clock (NTP not an option for receiver without internet access)

0000: £f ff ff f£f £f £f 00 30 18 cl dc a8 8f ff 00 1lc
0010: 3c 00 00 OO 81 00 00 18 04 6f 64 63 32 08
0020: 00 00 00 OO 57 f£6 94 20 48 3a ca 8d 00 00 00 00
0030: 00 00 00 0O OO OO 0O 00 00 00 00 0O

@ Variable record length structure

@ Ethernet + OP + LDP header (sent to SID 0x81)

) 0x01 is Groundstation ID, 0x02 is Unix timestamp (G. Hopkins)

@ Record length (found by G. Hopkins)

@ ASCII for odc2 (Outernet DataCasting 2) = Groundstation for Americas satellite

@ Unix timestamp 06 Oct 2016 18:12:48

@ LDP checksum

@ Padding (not included in OP or LDP packet) = mTU (minimum transfer unit) = 46
bytes

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 28/45

File service overview

@ Broadcasts one file at a time (could broadcast several simultaneosly)
@ Splits each file into 242 byte blocks
@ Uses LDPC codes to recover the file even if some blocks are not received

@ Types of packets:

e File announcement. Sent first. Basic info about file
o File block (242 bytes of the file)
o FEC block (242 bytes of parity check symbols from LDPC code)

@ File blocks and FEC blocks are sent interleaved and in order (not necessary)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

File announcement packets

@ Large LDP packet (uses fragmentation)
@ File info in ASCII XML
@ Signed with X.509 certificate (to prevent spoofing?)

<?xml version="1.0" encoding="UTF-8"7?>

<file>
<id>2380</id>
<path>opaks/dad7-Alt-right.html.tbz2</path>
<hash>aed3e3b58193bdda%af9adb700972cb

426ca26b336e36c2dfal0l75b6eldeb4c8</hash>

<size>109186</size>
<block_size>242</block_size>
<fec>1ldpc:k=452,n=543,N1=2, seed=1000</fec>

</file>

@ Hash is SHA256

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

File block packets

0000: ff ff ff ff 18 £f 01 04
0010: 3c 02 00 00 00 e5 21 4b @ We return to our
0020: 48 2c 0 77 0

e7 19 4c typical frame

s e Ethernet + OP + LDP
0050: header

0060 @ File ID

0070:

0080: @ Block number

0090: @ Block contents (242
00a0:

00b0: bytes)

00c0: @ LDP checksum
88:8 @ FEC blocks have the
00£0: same structure (and
0100: different SID)

0110:

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 31/45

Application level FEC (due to George Hopkins)

@ Forward Error Correction codes working at the “application level” to restore missing
or corrupted information upon reception

@ Usually work as erasure codes (recover missing data at known positions)
@ Fits nicely with Outernet link, where some packets may be lost, but received packets
are error-free

@ Outernet uses two application level FEC systems:

o Erasure code to recover lost OP fragments
e LDPC code to recover lost file blocks

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 32/45

Erasure code for OP fragments

@ A (trivial) case of Reed-Solomon (1960), “rediscovered” and popularized by Luigi
Rizzo (1997). Implemented in zfec. Credit should be given to Reed and Solomon

@ For each packet with k fragments (k > 2), 3 extra fragments with parity check
symbols are sents after the k fragments

@ The packet can be completely recovered even if up to 3 fragments are lost from this
set of k + 3 fragments

@ Quite important for file annoucements (k = 6 or 7 typically). If you lose the
announcement, you probably lose the whole file

@ Parity check symbol fragments are marked with 0x69 as fragmentation field and
numbered from 00 to 02 using the fragment number fields.

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 33/45

LDPC code for file blocks

@ Essentially, the LDPC code follows RFC5170, which describes
pseudorandomly-generated LDPC erasure codes for use as application level FEC

@ Bistromath and | already suspected in October 2016 that RFC5170 was used, but all
my attempts at FEC decoding failed

@ The Lehmer/Park-Miller PRNG is used to generate the parity check matrix for the

LDPC code:
Xpit1 = 7°x, mod 231 — 1.

@ But x, has to be brought down to the range [0, m]. As you may know, the least
significant bits are less random, so division instead of modulo should be used. The
RFC reminds us of this.

@ However, Outernet used modulo (FAIL!), so no wonder that my decoding attempts
failed

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 34/45

@ FEC blocks are sent between the file blocks, using SID 0xf f and file ID and
as in file blocks

@ Afile of s bytes is sentin k = [s/242] blocks. An (n, k) LDPC code is selected to get
arate r = k/n of approximately 5/6, so n = [6k/5], and n — k FEC blocks are used

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 35/45

What do we have now?

@ Lots of documentation about Outernet protocols:
http://destevez.net/tag/outernet/

@ GNU Radio receiver. Uses an SDR to get Outernet frames. Realtime output by UDP
socket and KISS file recording:
https://github.com/daniestevez/gr-outernet

@ Python implementation of the file transfer protocol. Can get frames in realtime by
UDP socket or from KISS file recording:
https://github.com/daniestevez/free-outernet

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 36/45

http://destevez.net/tag/outernet/
https://github.com/daniestevez/gr-outernet
https://github.com/daniestevez/free-outernet

free-outernet demo

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 37/45

e Some other fun stuff | did

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 38/45

Outernet groundstation satellite modem

@ X.509 certificates for file announcements use as CN odc2.outernet.is,
odc3.outernet.is, efc.

@ Let'sgotonttp://odc2.outernet.is/!

@ The HTTP port is blocked now, but previously it led to the login page of the satellite
modem (huge security flaw)

@ It's the M7 modem from Datum Systems
@ Lots of documentation available for you modem fans!

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 39/45

MODEL M7 AND M 7L

rev030315

ecifications

Demodulator

Operating Modes

TX and RX Coninuous (SCPC)

FlexLDPC, Flexible Block and Code Rates, Low
Lalency

Advanced TPC and Indusiry Compatible

Std and Custom Async Low Overhead Channels

AUPC

Remote Modem Control Channel

1P, Ethernet, Dual G.703/E1 (D&1), Serial, HSSI

Opt Plug-in 1O Selections (Up io 2 per M7 Unit)

Data Rate Range

T3 Kbps t0 39 04 Mbps (1 bpssieps)

fremoduator
Input Acquisition Range.

=100 Hz o =3 MHz, I Hz Sicps

Minimum Inpu Lev

10 * Log(Symbol Rate) - 125= Lv1 (dBm)

Maximum Input Level

10 * Log(Symbol Rate) -80 = L {dBrm)

Maximum IF Input Power Density

=30 dBe/He

Maximum Total Power

=10 dBm

Rocelve Acquiiton Time

Typieal 71 ms at 64+ kbps, QPSK.

Input Impedance

IF 50 or 75 Ohms BNC (User Selectable)
L-Band 50 Ohms SMA

Toput Return Loss

IF > 20 dB, L-Band > 16dB

S5 mbol Rate Range

(3400 sps to 14,76 Msps (1 sps steps)

Tnput Phase Noise

= Trielsi by § aB typieal 4 dB i

Frequency Tuning Range

MT 30- 180 MHz, MTL 930-2150 MHz (1 Hz steps)

Demod Rall-OfT Factor %

58,10, 15, 20,35, 30, 35, 40 (%)

Modulation Types BPSK QPSK.OQPSKAPSKIQAM. T6QAM St Carrler Cancelling
FEC Options None, Viterbi, TCM, Reed-Solomon, FiexLDPC Teley Ranze T i e
| TPC 4k and TPC 16k (Opt Plug-in HW) “Acquisition Tme. < 30 Sec for Full Delay Sweep.
Advanced Flex DPC Block Sizes 2 [N Power Spectral Densty Ratio: = 1008
Rates 12,2 10711,16 Symbol Rate Ratic: +/- 30% of Symbal Rale
Turbo Product Code TRC-Ik 8,0.950 Frequency Offsel: +/- 12.5% of Symbol Rate
i
12,34, 778 (k= El BPSK/QPSK/OQPSK: 02dB
Reed Solomon Selecable N & K, ESS S0R509310 SPSK/SQAM: 03B
ScramblerDescrambler TBS. V35 IESS_TPC, RS, LDPC, EFD 16QAM 05 a8
Typical Eb/No for 1E-8 BER - \lnler‘face Options: (Choose Up to Two Per Modem)
- Pt [TN T
™ = [Serial Data Interface (S7) _
FlexLDPC DES 8PSK BQAM | 15QAM P Main Ini Modes Sync RS-232,449,V3 5 ELA 530 (DB-151
tgggl:;i" ‘1‘;::3 ”:ﬂ ;5‘::3 :?2:3 ‘;‘;g""‘ Totermal Clock (ST) Accumcy ZIE-1Z, (= 1 part per Trillion)
= nfa ms
Doppler Buller Depth T 1o 574,789 Bits, | Bi Sieps
DPC-1/28K i52d8 | nia 319d8 | 392d6 | 1950ms R e Ll e
ESC Overhead 10 Modes Async RS 23ZRS-AS (DB-23)
LDPC-1/2-16k 1.38 dB nfa 3.04dB 3.76dB | 3886 ms
[Adv Mux ESC OH Data Rate Disabled, 300 by 10 3.3 Mbps, 1 bps Steps
LDPC-2/32k 2.77dB 488 dB 468dB 5.85dB 444 ms A Mux (MCC) OH Dan Raie Disabled 300 0 1.5 Mbps. 17 S
[DPC2/3-4k 34608 | 453dB | 436dB| 546dB | 875ms v Mo (M e eanec W T T O e
DPC-2/38K 323d8 | 428dB | 409dB| 519dB | 1737 ms ESC Remate Signaling 10's Form € (Q1y2)
C-2/3-16k 2.09 414 301 5.01 3461 ms [Advanced IP Tnterface (I7)
C3/421 3.52 597 551 678 41.9 ms [Adv Ethemet [P Interface TOTI00 BaseT, Gigabit Elhernet (RI451
3744l 3.14 556 511 637 824 ms [Operating Syst Debian Linx Opemting Sysiem
C-3/4-8 2.89 527 483 6.07 1631 ms [Operating Modes Bridge and Vyatta Router
C3/416k | 272 507 463 587 3250 ms Fackers Por Second TS
e - L o e [Netwolk Protosols SecSpecifeation
[DPC7/88k 4.00d8 | 686dB | 605dB| 7.51dB |1473ms [Epee el —
LDPC7/816k 3.00dB | 666dE | 587dB| 732dB [2936ms Express Ethernet Ports APoris (RJ.45), 1 Port STP
LDPC10/11-2k | 5.63dB | 873dB | 7.68dB| 037dB | 37.0ms 4 Port Interface 107100 BaseT, Gigabit Ethernst (R1-45)
[DPC10/11-4k | 5.00d8 | 79908 | 702d8| §63d8 | 723ms STF Por Gptional Gigabit or Opiiuc Fiber
LDPC-10/11-8k | 4568 | 751dB | 6.60dB| 818dB [1430ms Ethernet Protocol Layer 2 Swiched Bridge Only
LDPC-10/11-16k | 4.40 dB 733dB 635dB 7.95dB | 2845 ms Features QoS and VLAN Selectable

Guaranteed Eb/No ks 0.2 dB > Typical

Tl GIE Taferfice (G

Dr. Daniel Estévez

Reverse Engineering Outernet

FAQin 2018

40/ 45

Groundstation geolocation

@ Geolocate the cdc?.outernet.is IPs

@ odc2.outernet.is Americas 216.129.171.61 = Toronto

@ odc3.outernet.is Europe/Africa 212.165.126.66 = Amsterdam

@ odc4d.outernet.is Asia/Pacific 123.100.88.137 = Ketu Bay, New Zealand
@ These are most likely located in large Inmarsat groundstation facilities

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018

Actual data throughput

@ Outernet stated about 20MB of content per day
@ s this true?

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 42 /45

Actual data throughput

@ Outernet stated about 20MB of content per day
@ |s this true?
@ 242 byte blocks sent inside 272 byte Ethernet frames = 12% overhead for headers

@ All but the smallest files use LDPC codes with a rate of about 5/6 = 20% overhead
for FEC

@ Total overhead of 30%
@ Bitrate is 2.1kbps (At most. Should account for HDLC bit-stuffing)
@ This only gives 15.14MB of content per day

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 42 /45

© Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 43 /45

What can we expect?

@ The network protocols need not change. Maybe free-outernet can still be used
without modifications

@ The modulation and coding will most likely change

@ Need to look at the RF signal with fresh eyes once (and if) it goes live

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 44 /45

https://github.com/blockstream/satellite

What can we expect?

@ The network protocols need not change. Maybe free-outernet can still be used
without modifications

@ The modulation and coding will most likely change

@ Need to look at the RF signal with fresh eyes once (and if) it goes live

@ In the meantime, an example Ku-band single-service channel: Blockstream satellite

Bitcoin blockchain broadcast over Ku-band geostationary satellites

GNU Radio receiver https://github.com/blockstream/satellite

156kbaud QPSK

Barker codes for preamble synchronization

Turbo codes for FEC

G3RUH scrambling and HDLC framing

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 44 /45

https://github.com/blockstream/satellite

What can we expect?

@ The network protocols need not change. Maybe free-outernet can still be used
without modifications

@ The modulation and coding will most likely change

@ Need to look at the RF signal with fresh eyes once (and if) it goes live

@ In the meantime, an example Ku-band single-service channel: Blockstream satellite
Bitcoin blockchain broadcast over Ku-band geostationary satellites

GNU Radio receiver https://github.com/blockstream/satellite
156kbaud QPSK

Barker codes for preamble synchronization

Turbo codes for FEC

G3RUH scrambling and HDLC framing

@ Or maybe something completely crazy and different:

14 February. LoRA tests through SES-2 by Outernet at 11.9GHz.

30kbps, received with LNB or custom patch antenna.

Claimed that LoRA is used to fight co-channel interference.

Maybe not a good idea. It seems they don’t understand spread-spectrum properly.

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 44 /45

https://github.com/blockstream/satellite

Thanks for your attention!

FAQin 2018 45/45

	Introduction
	L-band service: modulation and coding (from RF to frames)
	L-band service: network protocols (from frames to files)
	Some other fun stuff I did
	Looking forward to the Ku-band service

