
Reverse Engineering Outernet:
a look to the past and future

Dr. Daniel Estévez

3 March 2018
FAQin 2018, Madrid

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 1 / 45

Outline

1 Introduction

2 L-band service: modulation and coding (from RF to frames)

3 L-band service: network protocols (from frames to files)

4 Some other fun stuff I did

5 Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 2 / 45

Outline

1 Introduction

2 L-band service: modulation and coding (from RF to frames)

3 L-band service: network protocols (from frames to files)

4 Some other fun stuff I did

5 Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 3 / 45

What is Outernet?

Startup company with goal of easing worldwide Internet access by broadcasting
content from satellites
Aims for almost worldwide coverage
August 2014. Started broadcasting on Ku-band (11GHz) DTH satellites using DVB-S
May 2016. Switched to narrowband broadcasts on L-band (1.5GHz) through 3
Inmarsat satellites (Americas, Europe/Africa, Asia/Pacific)
January 2018. L-band service terminated
Future narrowband Ku-band service. Currently some intermittent tests over North
America

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 4 / 45

Data rates & receiving equipment

Ku-band DVB-S
Typically 27.5Mbaud QPSK (or higher order PSK). Multiplex shared with TV channels
and other services
90kbps data service inside the multiplex
Spot beams. Regional coverage per beam
Parabolic dish, LNB, DVB-S set-top-box or dongle

L-band single-service channel
4.2kbaud BPSK. Only gives 15MB/day
Global beam. 1/3rd Earth coverage per satellite
Patch antenna, LNA, SDR dongle (RTL-SDR)

Ku-band single-service channel
30-100kbps service claimed
Typically spot beams
No dish claimed (maybe?), LNB, SDR dongle (RTL-SDR)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 5 / 45

Outernet’s “business” model

Anyone can receive Outernet for free. Receiver software can be downloaded from
Outernet’s web site
Most of the software is open-source, but the key components are closed-source and
the signal coding and protocols are not public
Outernet sells receiver hardware kits, but you can also make your own using
off-the-shelf components
Some people wonder how Outernet manages to make any money. Maybe they live
off investors

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 6 / 45

Reverse engineering Outernet L-band service

In October 2016 I reverse-engineered the L-band service almost completely
This work was presented in the 33th Chaos Communication Congress in December
2016
In January 2017, George Hopkins figured out the last missing details
The L-band service is now completely documented and a fully functional
open-source receiver is available
Why reverse engineer Outernet?

A secret protocol and closed-source software don’t serve well the goal of easing
worldwide Internet access
Amateur Radio operators started playing with Outernet. Closed-source and secret
protocols detrimental for Amateur Radio

Things I knew before starting:
RF goes in, files come out. About 2kbps bitrate or 20MB of content per day
outernet-linux-lband closed-source software (Older version for Linux x86_64.
Now everything is for ARM): sdr100-1.0.4, SDR modem for RTL-SDR; ondd-2.2.0,
does everything else
IQ recordings by Scott Chapman K4KDR

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 7 / 45

Reverse engineering Outernet L-band service

In October 2016 I reverse-engineered the L-band service almost completely
This work was presented in the 33th Chaos Communication Congress in December
2016
In January 2017, George Hopkins figured out the last missing details
The L-band service is now completely documented and a fully functional
open-source receiver is available
Why reverse engineer Outernet?

A secret protocol and closed-source software don’t serve well the goal of easing
worldwide Internet access
Amateur Radio operators started playing with Outernet. Closed-source and secret
protocols detrimental for Amateur Radio

Things I knew before starting:
RF goes in, files come out. About 2kbps bitrate or 20MB of content per day
outernet-linux-lband closed-source software (Older version for Linux x86_64.
Now everything is for ARM): sdr100-1.0.4, SDR modem for RTL-SDR; ondd-2.2.0,
does everything else
IQ recordings by Scott Chapman K4KDR

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 7 / 45

Outline

1 Introduction

2 L-band service: modulation and coding (from RF to frames)

3 L-band service: network protocols (from frames to files)

4 Some other fun stuff I did

5 Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 8 / 45

Waterfall in Linrad

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 9 / 45

Modulation

4.8kHz wide
Looks like a hump in the noise floor
“Any sufficiently advanced communication scheme is indistinguishable from noise” —
Phil Karn KA9Q
We suspect PSK modulation. BPSK and QPSK are good candidates
We use GNU Radio for signal processing. First step: find out PSK order and baudrate

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 10 / 45

Modulation

4.8kHz wide
Looks like a hump in the noise floor
“Any sufficiently advanced communication scheme is indistinguishable from noise” —
Phil Karn KA9Q
We suspect PSK modulation. BPSK and QPSK are good candidates
We use GNU Radio for signal processing. First step: find out PSK order and baudrate

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 10 / 45

Reading from IQ wav file in GNU Radio

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 11 / 45

PSK order

Raise the signal to integer powers

Power 2 of the signal has DC spike⇒ BPSK
For QPSK, we would need to go to 4th power

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 12 / 45

Baudrate

Cyclostationary analysis

Baudrate is 4200baud
Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 13 / 45

BPSK demodulation

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 14 / 45

Coding

Baudrate is 4200baud but bitrate is only about 2kbps
We suspect r = 1/2 FEC in use
Most popular choice: r = 1/2, k = 7 convolutional code with CCSDS polynomials
We use Balint Seeber’s AutoFEC to find FEC parameters
“Standard” CCSDS convolutional code, but with the two polynomials swapped
We use GNU Radio Viterbi decoder to decode FEC

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 15 / 45

Coding

Baudrate is 4200baud but bitrate is only about 2kbps
We suspect r = 1/2 FEC in use
Most popular choice: r = 1/2, k = 7 convolutional code with CCSDS polynomials
We use Balint Seeber’s AutoFEC to find FEC parameters
“Standard” CCSDS convolutional code, but with the two polynomials swapped
We use GNU Radio Viterbi decoder to decode FEC

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 15 / 45

Viterbi decoding

Output looks random⇒ we need a descrambler
Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 16 / 45

Descrambler

The most popular descramblers I knew of didn’t work
Reverse engineer the assembler code for the descrambler in sdr100

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 17 / 45

IESS-308 scrambler

It turns out the scrambler is V.35, used in the IESS-308 standard, very popular in GEO
satellite comms, but mostly unheard of in Amateur LEO satellites

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 18 / 45

Descrambling

Now we can see some structure in the output
Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 19 / 45

Framing

Several functions in the sdr100 binary have “HDLC” in them
We suspect HDLC framing
We use the HDLC deframer from gr-satellites (there’s also a stock deframer in
GNU Radio)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 20 / 45

HDLC deframing

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 21 / 45

Outline

1 Introduction

2 L-band service: modulation and coding (from RF to frames)

3 L-band service: network protocols (from frames to files)

4 Some other fun stuff I did

5 Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 22 / 45

Reverse engineering frames

Techniques used:
Look at hex dumps of the frames
ondd usually gets frames from sdr100 via Unix socket. Inject frames into ondd and see
what happens

Outernet uses custom network protocols⇒ I get to name them as I like!

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 23 / 45

A typical frame

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b
0020: 48 2c e0 77 00 86 4d 14 06 3c 24 f7 30 e7 19 4c
0030: ed 60 d4 44 94 6a 4a 18 34 ad b2 b5 92 01 b7 87
0040: 06 ba 80 61 a5 87 06 80 f6 04 12 f6 d9 12 13 02
0050: 64 0b 68 94 21 36 01 ab af 01 50 d0 13 4b dc b6
0060: 92 90 6b f4 76 27 73 3d 91 f5 84 3d 75 d9 77 90
0070: d2 74 15 49 66 e5 9a 57 df df 72 28 32 48 97 ed
0080: 9a 46 6e 68 8e 72 b3 54 5f 52 ce f6 f5 de c1 fd
0090: e4 e6 f8 a2 bd bb bb 65 cf 9e d0 ed 80 1e ad 8c
00a0: 0c b8 59 28 41 cf 27 d3 cf a9 9e 28 06 8e c0 c8
00b0: 42 7a bd ea da ae 7e 41 ee 24 c2 f9 28 b7 35 f6
00c0: 8b 12 13 23 1f fb 0d 3e 32 49 b9 75 4b 31 d3 29
00d0: 11 c1 48 a2 3b d4 8b 40 e6 2c 69 02 59 f2 f8 c8
00e0: d2 ea aa ce 63 57 ed f7 25 42 8e 9b 21 d4 64 07
00f0: 89 59 d0 47 d6 7b c7 3c c7 11 2c 91 d3 ca b1 52
0100: ea ba be e3 00 39 fb be 6a 02 52 e3 8f ac ba 30
0110: b7 d1 c2 3f

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 24 / 45

A typical frame

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b
0020: 48 2c e0 77 00 86 4d 14 06 3c 24 f7 30 e7 19 4c
0030: ed 60 d4 44 94 6a 4a 18 34 ad b2 b5 92 01 b7 87
0040: 06 ba 80 61 a5 87 06 80 f6 04 12 f6 d9 12 13 02
0050: 64 0b 68 94 21 36 01 ab af 01 50 d0 13 4b dc b6
0060: 92 90 6b f4 76 27 73 3d 91 f5 84 3d 75 d9 77 90
0070: d2 74 15 49 66 e5 9a 57 df df 72 28 32 48 97 ed
0080: 9a 46 6e 68 8e 72 b3 54 5f 52 ce f6 f5 de c1 fd
0090: e4 e6 f8 a2 bd bb bb 65 cf 9e d0 ed 80 1e ad 8c
00a0: 0c b8 59 28 41 cf 27 d3 cf a9 9e 28 06 8e c0 c8
00b0: 42 7a bd ea da ae 7e 41 ee 24 c2 f9 28 b7 35 f6
00c0: 8b 12 13 23 1f fb 0d 3e 32 49 b9 75 4b 31 d3 29
00d0: 11 c1 48 a2 3b d4 8b 40 e6 2c 69 02 59 f2 f8 c8
00e0: d2 ea aa ce 63 57 ed f7 25 42 8e 9b 21 d4 64 07
00f0: 89 59 d0 47 d6 7b c7 3c c7 11 2c 91 d3 ca b1 52
0100: ea ba be e3 00 39 fb be 6a 02 52 e3 8f ac ba 30
0110: b7 d1 c2 3f

Ethernet frame:
Broadcast
destination
Source MAC
Custom ethertype

Length: 276 bytes⇒
aprox. 1 second over
the air (this is
Outernet’s MTU)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 25 / 45

L3 protocol: OP

OP = “Outernet Protocol” (pun on IP)
Handles fragmentation
Packet order is preserved⇒ fragmentation is very simple

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b
...

OP packet size
Fragmentation 3c = last fragment, c3 = fragments remain
Carousel ID (reverse engineered from ondd by George Hopkins)
Fragment number of last fragment
Fragment number of this fragment

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 26 / 45

L4 protocol: LDP

LDP = “Lightweight Datagram Protocol” (pun on UDP)
Datagram protocol. Has some sort of port or SID to identify services

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b
...
0110: b7 d1 c2 3f

Type (port or SID) (0x18 marks a file block)
LDP packet size
Checksum CRC32-MPEG2 (algorithm found by G. Hopkins)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 27 / 45

Time service packets

Time packet broadcast every minute
Used to set the receiver clock (NTP not an option for receiver without internet access)

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 00 1c
0010: 3c 00 00 00 81 00 00 18 01 04 6f 64 63 32 02 08
0020: 00 00 00 00 57 f6 94 20 48 3a ca 8d 00 00 00 00
0030: 00 00 00 00 00 00 00 00 00 00 00 00

Variable record length structure
Ethernet + OP + LDP header (sent to SID 0x81)
Record type 0x01 is Groundstation ID, 0x02 is Unix timestamp (G. Hopkins)
Record length (found by G. Hopkins)
ASCII for odc2 (Outernet DataCasting 2)⇒ Groundstation for Americas satellite
Unix timestamp 06 Oct 2016 18:12:48
LDP checksum
Padding (not included in OP or LDP packet)⇒ mTU (minimum transfer unit) = 46
bytes

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 28 / 45

File service overview

Broadcasts one file at a time (could broadcast several simultaneosly)
Splits each file into 242 byte blocks
Uses LDPC codes to recover the file even if some blocks are not received
Types of packets:

File announcement. Sent first. Basic info about file
File block (242 bytes of the file)
FEC block (242 bytes of parity check symbols from LDPC code)

File blocks and FEC blocks are sent interleaved and in order (not necessary)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 29 / 45

File announcement packets

Large LDP packet (uses fragmentation)
File info in ASCII XML
Signed with X.509 certificate (to prevent spoofing?)

<?xml version="1.0" encoding="UTF-8"?>
<file>
<id>2380</id>
<path>opaks/dad7-Alt-right.html.tbz2</path>
<hash>aed3e3b58193bdda9af9adb700972cb

426ca26b336e36c2dfa0175b6e1deb4c8</hash>
<size>109186</size>
<block_size>242</block_size>
<fec>ldpc:k=452,n=543,N1=2,seed=1000</fec>

</file>

Hash is SHA256
Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 30 / 45

File block packets

0000: ff ff ff ff ff ff 00 30 18 c1 dc a8 8f ff 01 04
0010: 3c 02 00 00 18 00 01 00 00 00 08 11 10 e5 21 4b
0020: 48 2c e0 77 00 86 4d 14 06 3c 24 f7 30 e7 19 4c
0030: ed 60 d4 44 94 6a 4a 18 34 ad b2 b5 92 01 b7 87
0040: 06 ba 80 61 a5 87 06 80 f6 04 12 f6 d9 12 13 02
0050: 64 0b 68 94 21 36 01 ab af 01 50 d0 13 4b dc b6
0060: 92 90 6b f4 76 27 73 3d 91 f5 84 3d 75 d9 77 90
0070: d2 74 15 49 66 e5 9a 57 df df 72 28 32 48 97 ed
0080: 9a 46 6e 68 8e 72 b3 54 5f 52 ce f6 f5 de c1 fd
0090: e4 e6 f8 a2 bd bb bb 65 cf 9e d0 ed 80 1e ad 8c
00a0: 0c b8 59 28 41 cf 27 d3 cf a9 9e 28 06 8e c0 c8
00b0: 42 7a bd ea da ae 7e 41 ee 24 c2 f9 28 b7 35 f6
00c0: 8b 12 13 23 1f fb 0d 3e 32 49 b9 75 4b 31 d3 29
00d0: 11 c1 48 a2 3b d4 8b 40 e6 2c 69 02 59 f2 f8 c8
00e0: d2 ea aa ce 63 57 ed f7 25 42 8e 9b 21 d4 64 07
00f0: 89 59 d0 47 d6 7b c7 3c c7 11 2c 91 d3 ca b1 52
0100: ea ba be e3 00 39 fb be 6a 02 52 e3 8f ac ba 30
0110: b7 d1 c2 3f

We return to our
typical frame
Ethernet + OP + LDP
header
File ID
Block number
Block contents (242
bytes)
LDP checksum
FEC blocks have the
same structure (and
different SID)

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 31 / 45

Application level FEC (due to George Hopkins)

Forward Error Correction codes working at the “application level” to restore missing
or corrupted information upon reception
Usually work as erasure codes (recover missing data at known positions)
Fits nicely with Outernet link, where some packets may be lost, but received packets
are error-free
Outernet uses two application level FEC systems:

Erasure code to recover lost OP fragments
LDPC code to recover lost file blocks

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 32 / 45

Erasure code for OP fragments

A (trivial) case of Reed-Solomon (1960), “rediscovered” and popularized by Luigi
Rizzo (1997). Implemented in zfec. Credit should be given to Reed and Solomon
For each packet with k fragments (k ≥ 2), 3 extra fragments with parity check
symbols are sents after the k fragments
The packet can be completely recovered even if up to 3 fragments are lost from this
set of k + 3 fragments
Quite important for file annoucements (k = 6 or 7 typically). If you lose the
announcement, you probably lose the whole file
Parity check symbol fragments are marked with 0x69 as fragmentation field and
numbered from 00 to 02 using the fragment number fields.

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 33 / 45

LDPC code for file blocks

Essentially, the LDPC code follows RFC5170, which describes
pseudorandomly-generated LDPC erasure codes for use as application level FEC
Bistromath and I already suspected in October 2016 that RFC5170 was used, but all
my attempts at FEC decoding failed
The Lehmer/Park-Miller PRNG is used to generate the parity check matrix for the
LDPC code:

xn+1 = 75xn mod 231 − 1.

But xn has to be brought down to the range [0,m]. As you may know, the least
significant bits are less random, so division instead of modulo should be used. The
RFC reminds us of this.
However, Outernet used modulo (FAIL!), so no wonder that my decoding attempts
failed

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 34 / 45

FEC blocks are sent between the file blocks, using SID 0xff and file ID and block
number as in file blocks
A file of s bytes is sent in k = ds/242e blocks. An (n, k) LDPC code is selected to get
a rate r = k/n of approximately 5/6, so n = d6k/5e, and n − k FEC blocks are used

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 35 / 45

What do we have now?

Lots of documentation about Outernet protocols:
http://destevez.net/tag/outernet/

GNU Radio receiver. Uses an SDR to get Outernet frames. Realtime output by UDP
socket and KISS file recording:
https://github.com/daniestevez/gr-outernet

Python implementation of the file transfer protocol. Can get frames in realtime by
UDP socket or from KISS file recording:
https://github.com/daniestevez/free-outernet

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 36 / 45

http://destevez.net/tag/outernet/
https://github.com/daniestevez/gr-outernet
https://github.com/daniestevez/free-outernet

free-outernet demo

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 37 / 45

Outline

1 Introduction

2 L-band service: modulation and coding (from RF to frames)

3 L-band service: network protocols (from frames to files)

4 Some other fun stuff I did

5 Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 38 / 45

Outernet groundstation satellite modem

X.509 certificates for file announcements use as CN odc2.outernet.is,
odc3.outernet.is, etc.
Let’s go to http://odc2.outernet.is/!
The HTTP port is blocked now, but previously it led to the login page of the satellite
modem (huge security flaw)
It’s the M7 modem from Datum Systems
Lots of documentation available for you modem fans!

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 39 / 45

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 40 / 45

Groundstation geolocation

Geolocate the odc?.outernet.is IPs
odc2.outernet.is Americas 216.129.171.61⇒ Toronto
odc3.outernet.is Europe/Africa 212.165.126.66⇒ Amsterdam
odc4.outernet.is Asia/Pacific 123.100.88.137⇒ Ketu Bay, New Zealand
These are most likely located in large Inmarsat groundstation facilities

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 41 / 45

Actual data throughput

Outernet stated about 20MB of content per day
Is this true?
242 byte blocks sent inside 272 byte Ethernet frames⇒ 12% overhead for headers
All but the smallest files use LDPC codes with a rate of about 5/6⇒ 20% overhead
for FEC
Total overhead of 30%
Bitrate is 2.1kbps (At most. Should account for HDLC bit-stuffing)
This only gives 15.14MB of content per day

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 42 / 45

Actual data throughput

Outernet stated about 20MB of content per day
Is this true?
242 byte blocks sent inside 272 byte Ethernet frames⇒ 12% overhead for headers
All but the smallest files use LDPC codes with a rate of about 5/6⇒ 20% overhead
for FEC
Total overhead of 30%
Bitrate is 2.1kbps (At most. Should account for HDLC bit-stuffing)
This only gives 15.14MB of content per day

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 42 / 45

Outline

1 Introduction

2 L-band service: modulation and coding (from RF to frames)

3 L-band service: network protocols (from frames to files)

4 Some other fun stuff I did

5 Looking forward to the Ku-band service

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 43 / 45

What can we expect?

The network protocols need not change. Maybe free-outernet can still be used
without modifications
The modulation and coding will most likely change
Need to look at the RF signal with fresh eyes once (and if) it goes live
In the meantime, an example Ku-band single-service channel: Blockstream satellite

Bitcoin blockchain broadcast over Ku-band geostationary satellites
GNU Radio receiver https://github.com/blockstream/satellite
156kbaud QPSK
Barker codes for preamble synchronization
Turbo codes for FEC
G3RUH scrambling and HDLC framing

Or maybe something completely crazy and different:
14 February. LoRA tests through SES-2 by Outernet at 11.9GHz.
30kbps, received with LNB or custom patch antenna.
Claimed that LoRA is used to fight co-channel interference.
Maybe not a good idea. It seems they don’t understand spread-spectrum properly.

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 44 / 45

https://github.com/blockstream/satellite

What can we expect?

The network protocols need not change. Maybe free-outernet can still be used
without modifications
The modulation and coding will most likely change
Need to look at the RF signal with fresh eyes once (and if) it goes live
In the meantime, an example Ku-band single-service channel: Blockstream satellite

Bitcoin blockchain broadcast over Ku-band geostationary satellites
GNU Radio receiver https://github.com/blockstream/satellite
156kbaud QPSK
Barker codes for preamble synchronization
Turbo codes for FEC
G3RUH scrambling and HDLC framing

Or maybe something completely crazy and different:
14 February. LoRA tests through SES-2 by Outernet at 11.9GHz.
30kbps, received with LNB or custom patch antenna.
Claimed that LoRA is used to fight co-channel interference.
Maybe not a good idea. It seems they don’t understand spread-spectrum properly.

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 44 / 45

https://github.com/blockstream/satellite

What can we expect?

The network protocols need not change. Maybe free-outernet can still be used
without modifications
The modulation and coding will most likely change
Need to look at the RF signal with fresh eyes once (and if) it goes live
In the meantime, an example Ku-band single-service channel: Blockstream satellite

Bitcoin blockchain broadcast over Ku-band geostationary satellites
GNU Radio receiver https://github.com/blockstream/satellite
156kbaud QPSK
Barker codes for preamble synchronization
Turbo codes for FEC
G3RUH scrambling and HDLC framing

Or maybe something completely crazy and different:
14 February. LoRA tests through SES-2 by Outernet at 11.9GHz.
30kbps, received with LNB or custom patch antenna.
Claimed that LoRA is used to fight co-channel interference.
Maybe not a good idea. It seems they don’t understand spread-spectrum properly.

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 44 / 45

https://github.com/blockstream/satellite

Thanks for your attention!

Dr. Daniel Estévez Reverse Engineering Outernet FAQin 2018 45 / 45

	Introduction
	L-band service: modulation and coding (from RF to frames)
	L-band service: network protocols (from frames to files)
	Some other fun stuff I did
	Looking forward to the Ku-band service

