Plotting spectrum measurements by SMOG-P

The SMOG-P 1P PocketQube that was launched recently has an interesting payload: a UHF spectrum monitor that records power spectral density measurements. Lately, I have been adding support in gr-satellites to decode the telemetry frames transmitted by SMOG-P and ATL-1 (which also carries a similar spectrum monitor), using the code published here as a reference.

As a result of this work, now it is possible to save and plot the spectrum data transmitted by SMOG-P and ATL-1 using gr-satellites. This post explains how.

Continue reading “Plotting spectrum measurements by SMOG-P”

SMOG-P short codes

In my previous post I talked about the FEC used by the SMOG-P and ATL-1. In there, I reverse-engineered the long frames transmitted by SMOG-P and found that they use the AO-40 FEC protocol.

After publishing that post I started reverse-engineering the short frames. Meanwhile, Peter Horvath pointed me to a Github repository containing an implementation of the FEC used for short frames and long frames. I hadn’t seen that repository before (it’s not easy to search for SMOG-P or ATL-1 in Google, as many unrelated results come up). Indeed this repository contains the source of a FEC decoder for the short frames, so there is no need to reverse-engineer it.

Timur Kristóf, the author of that repository, says that the team plans to release the source for the decoder, but that they are currently very busy with the early operations of the satellites. This is very good news.

I have studied the code in the Github repository and included a decoder for the short FEC frames in gr-satellites.

Continue reading “SMOG-P short codes”

Decoding SMOG-P and ATL-1

Last Friday, an Electron rocket from Rocket Lab was launched from Mahia Launch Complex, New Zealand, carrying the ALE-2 microsatellite and 6 PocketQubes into a 400km polar orbit. Two of these PocketQubes are SMOG-P and ATL-1 from Budapest University of Technology and Economics.

They transmit in the 70cm Amateur satellite band, and although they have beeen successfully coordinated with IARU (see here and here), documentation about the protocols they use has not been published. There is some groundstation software available here, but the interesting part is implemented in the atlgnd_x86_64 and smogpgnd_x86_64 binary executables, for which source code is not available. As far as I know both satellites transmit using the same (or very similar) protocols.

In this post I describe my first attempts at reverse-engineering the transmissions of SMOG-P, with successful results. Preliminary support for decoding SMOG-P and ATL-1 has been added to gr-satellites in the maint-3.8 branch.

Continue reading “Decoding SMOG-P and ATL-1”

Oscillations and relativistic effects in Galileo broadcast clocks

A few days ago, Bert Hubert, the creator of galmon.eu, discovered a sinusoidal oscillation in the clock drift \(a_{f1}\) parameter of the broadcast ephemerides of Galileo satellites. This variation has a frequency that matches the orbital period of 14 hours and 7 minutes. At first, I suggested that it might be caused by relativistic effects, which are given by\[-\frac{\sqrt{\mu}}{c^2}e\sqrt{A}\sin E,\]where \(\mu\) is the Earth’s gravitational parameter, \(c\) is the speed of light, \(e\) is the eccentricity, \(A\) is the semi-major axis, and \(E\) is the eccentric anomaly. In fact, the order of magnitude of the oscillations that Bert was seeing seemed to agree with this formula.

However, then I realised that this relativistic effect is not included in the broadcast clock model. It needs to be included back by the receivers. Therefore, it shouldn’t appear at all in the broadcast clock. Something didn’t seem quite right. This post is an in-depth look at this problem.

Continue reading “Oscillations and relativistic effects in Galileo broadcast clocks”