AISAT and ATHENOXAT-1

It turns out that the satellites AISAT and ATHENOXAT-1 use the NanoCom U482C transceiver from GomSpace. This is the same transceiver that GOMX-1 uses, so the same decoder can be used.

I’ve added example flowgraphs and wav recordings to gr-ax100 and complete decoders to gr-satellites. Note that there is no telemetry parser yet, because I don’t have the telemetry format used by these satellites. Thanks to Jan PE0SAT for sending me an AISAT recording and to Roland PY4ZBZ for sending an ATHENOXAT-1 recording (note that this satellite is on a low inclination orbit, so it can only be received near the equator).

I’m on the lookout for any other satellites using the NanoCom U482C transceiver or the NanoCom AX100 transceiver (this is the transceiver that GOMX-3 uses), as it should be possible to decode them with gr-ax100.

Decoding GOMX-1 telemetry

GOMX-1 is a 2U cubesat from GomSpace that was launched in November 2013 into a sun-synchronous orbit. As far as I know, it was the first satellite with an ADS-B receiver payload. It transmits telemetry on the 70cm Amateur band, including some data from the ADS-B receiver, as GOMX-3 does. Some Amateurs, including me, had tried to decode its telemetry on several occasions, without success. GOMX-3 will decay in about 4 weeks, as it was launched from the ISS on October 2015. Therefore, it now becomes more interesting to decode GOMX-1, which is in a longer term orbit. After one more serious try, I’ve been able to decode the telemetry. This is the first time that an Amateur decodes telemetry from GOMX-1 completely. The decoder code can be found in gr-satellites and gr-ax100, including an example wav file in gr-ax100/examples/gomx-1.wav.

Some notes on BEESAT and Mobitex-NX

The family of BEESAT satellites from the TU Berlin transmit telemetry on the Amateur bands using the Mobitex-NX protocol. Some of the BEESAT satellites also include a digipeater using this same protocol. There is a GNUradio implementation from TU Berlin of a software TNC for these satellites. This software has some shortcomings (for instance, FEC decoding wasn’t working properly). I’ve made my own fork where I’ve fixed some of the problems. Here I’ll talk about various aspects of the Mobitex-NX protocol and the GNUradio implementation.

A brief try at decoding HORYU-4 1k2 AFSK telemetry

In the previous post I’ve talked about HORYU-4 CW telemetry. Here I report my findings when trying to decode 1200baud AFSK telemetry. Since the satellite transmits digital telemetry only over Japan, the recordings I’ve analysed have being kindly provided by Tetsurou JA0CAW. There is a telemetry format document from Kyutech, but as it is the case with the CW document, it is rather incomplete and lacks several important details.

HORYU-4 CW telemetry format

HORYU-4 is a small satellite from Kyushu Institute of Technology (Japan) designed to test a high voltage solar array in space and observe the effects produced by the charge on the spacecraft due to the high voltage. It transmits telemetry on the 70cm and 13cm amateur bands. It has a CW beacon at 437.375MHz, a 1200baud AFSK telemetry downlink at 437.375MHz and a 100kbaud BPSK telemetry downlink at 2400.3MHz. The digital telemetry downlinks are only active over Japan and use a custom packet format. Here we take a brief look at the format of the CW telemetry.

IARU R1 145MHz contest

Today I hiked with all the family to La Najarra, SOTA summit EA4/MD-013 (2122m), to participate in the IARU Region 1 145MHz contest. Unfortunately, for some weird reason very few stations in Spain participate in this contest. My plan was to make a combined contest activity and SOTA activation, making QSOs with whoever was working SSB in the contest, but spending most of the time calling in FM. This gives me the opportunity to contact many more stations, because not many hams have a VHF yagi and SSB radio, but many have a VHF vertical and FM radio. It also gives these local hams the possibility to work a SOTA summit (most SOTA activity is in HF here) and work some DX with a quite basic FM station (100km or more are easy to achieve).

I worked from around 9:30UTC to 11:30UTC. The station was, as usual, an FT-817ND with 5W and an Arrow satellite yagi (3 elements).

I’ve put in the contest log all stations that were able to give me their locator (many hams that work only FM have no clue about what locators are). This is OK with the contest rules. The other stations went only to the SOTA log. Below, you can find the map of contest contacts. I made a total of 17 contacts, but, of course, I can’t put on the map the stations that didn’t know their locator.